File size: 2,501 Bytes
a47e2a4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
---
library_name: peft
license: apache-2.0
base_model: google-t5/t5-base
tags:
- generated_from_trainer
model-index:
- name: medical-qa-t5-lora
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# medical-qa-t5-lora

This model is a fine-tuned version of [google-t5/t5-base](https://huggingface.co/google-t5/t5-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0000

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0005
- train_batch_size: 8
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 500
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 2.3794        | 16.8  | 50   | 1.9909          |
| 1.2119        | 33.4  | 100  | 0.4473          |
| 0.2431        | 50.0  | 150  | 0.0048          |
| 0.0343        | 66.8  | 200  | 0.0008          |
| 0.0118        | 83.4  | 250  | 0.0003          |
| 0.0068        | 100.0 | 300  | 0.0002          |
| 0.0042        | 116.8 | 350  | 0.0001          |
| 0.0028        | 133.4 | 400  | 0.0001          |
| 0.002         | 150.0 | 450  | 0.0000          |
| 0.0015        | 166.8 | 500  | 0.0000          |
| 0.0012        | 183.4 | 550  | 0.0000          |
| 0.0017        | 200.0 | 600  | 0.0000          |
| 0.0012        | 216.8 | 650  | 0.0000          |
| 0.0008        | 233.4 | 700  | 0.0000          |
| 0.0006        | 250.0 | 750  | 0.0000          |
| 0.0006        | 266.8 | 800  | 0.0000          |
| 0.0004        | 283.4 | 850  | 0.0000          |
| 0.0004        | 300.0 | 900  | 0.0000          |
| 0.0004        | 316.8 | 950  | 0.0000          |
| 0.0004        | 333.4 | 1000 | 0.0000          |


### Framework versions

- PEFT 0.14.0
- Transformers 4.51.3
- Pytorch 2.6.0+cu124
- Datasets 3.6.0
- Tokenizers 0.21.1