AmhT5 Tokenizer
A T5 Tokenizer trained for the Amharic language.
The tokenizer has a Fertility rate: 1.8328
Notebook used for training: https://colab.research.google.com/drive/1B-pca9jpadTHz9WYTWXzPM-A1cTaltYo#scrollTo=wLslLc0D6TnA
Model Details
Model Description
An MT5Tokenizer based Amharic and English tokenizer trained using Fineweb and Wura datasets.
This tokenizer aims to have a tokenizer that can better represent Amharic while also doing the same for English.
To balance the dataset, I have used only 3 million document samples from the dataset. The vocabulary size of this tokenizer is the same as google/mt5-small.
MT5 Tokenizer Vs AmhT5 Tokenizer
from transformers import MT5TokenizerFast
mt5 = "google/mt5-small"
TOKENIZER = MT5TokenizerFast.from_pretrained(mt5, legacy=False)
tokens = TOKENIZER.tokenize("ከመዲናዋ በቅርብ ርቀት ላይ በምትገኘው ከተማ")
print(len(tokens)) # 20
print(tokens)
# ['▁ከመ', 'ዲ', 'ና', 'ዋ', '▁በ', 'ቅር', 'ብ', '▁', 'ር', 'ቀ', 'ት', '▁', 'ላይ', '▁በም', 'ት', 'ገ', 'ኘ', 'ው', '▁ከተ', 'ማ']
tokens = TOKENIZER.tokenize("A Tokenizer trained for Amharic language.")
print(len(tokens)) # 11
print(tokens)
# ['▁A', '▁', 'Token', 'izer', '▁train', 'ed', '▁for', '▁Am', 'haric', '▁language', '.']
amhT5 = "yonas/AmhT5-tokenizer"
TOKENIZER = MT5TokenizerFast.from_pretrained(amhT5, legacy=False)
tokens = TOKENIZER.tokenize("ከመዲናዋ በቅርብ ርቀት ላይ በምትገኘው ከተማ")
print(len(tokens)) # 11
print(tokens)
# ['▁ከ', 'መዲና', 'ዋ', '▁በ', 'ቅርብ', '▁', 'ርቀት', '▁ላይ', '▁በምት', 'ገኘው', '▁ከተማ']
tokens = TOKENIZER.tokenize("A Tokenizer trained for Amharic language.")
print(len(tokens)) # 7
print(tokens)
# ['▁A', '▁Token', 'izer', '▁trained', '▁for', '▁Amharic', '▁language.']
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support