wgcv's picture
End of training
20acc58 verified
|
raw
history blame
2.25 kB
---
license: apache-2.0
base_model: google-t5/t5-small
tags:
- generated_from_trainer
metrics:
- rouge
model-index:
- name: tidy-tab-model-t5-small
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# tidy-tab-model-t5-small
This model is a fine-tuned version of [google-t5/t5-small](https://huggingface.co/google-t5/t5-small) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.0120
- Rouge1: 0.7424
- Rouge2: 0.6202
- Rougel: 0.7365
- Rougelsum: 0.7347
- Gen Len: 7.0385
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 8
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:|
| No log | 1.0 | 132 | 1.2896 | 0.6823 | 0.5884 | 0.6755 | 0.6759 | 8.9744 |
| No log | 2.0 | 264 | 1.1210 | 0.7277 | 0.6094 | 0.7187 | 0.7176 | 7.5342 |
| No log | 3.0 | 396 | 1.0676 | 0.7358 | 0.6136 | 0.7287 | 0.7273 | 7.3077 |
| 1.5149 | 4.0 | 528 | 1.0409 | 0.7462 | 0.6233 | 0.7386 | 0.7367 | 7.1368 |
| 1.5149 | 5.0 | 660 | 1.0277 | 0.7464 | 0.6233 | 0.7387 | 0.7367 | 7.1068 |
| 1.5149 | 6.0 | 792 | 1.0186 | 0.7463 | 0.6229 | 0.7383 | 0.7362 | 7.0769 |
| 1.5149 | 7.0 | 924 | 1.0135 | 0.7423 | 0.6202 | 0.7364 | 0.7346 | 7.0427 |
| 1.0709 | 8.0 | 1056 | 1.0120 | 0.7424 | 0.6202 | 0.7365 | 0.7347 | 7.0385 |
### Framework versions
- Transformers 4.41.2
- Pytorch 2.3.0+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1