|
--- |
|
tags: |
|
- setfit |
|
- sentence-transformers |
|
- text-classification |
|
- generated_from_setfit_trainer |
|
widget: |
|
- text: I need some icon suggestions for this layout |
|
- text: Tighten the letter spacing |
|
- text: Group the logo and title together |
|
- text: Create a photo of a mountain landscape |
|
- text: Mirror the logo vertically |
|
metrics: |
|
- accuracy |
|
pipeline_tag: text-classification |
|
library_name: setfit |
|
inference: true |
|
base_model: nomic-ai/nomic-embed-text-v1.5 |
|
model-index: |
|
- name: SetFit with nomic-ai/nomic-embed-text-v1.5 |
|
results: |
|
- task: |
|
type: text-classification |
|
name: Text Classification |
|
dataset: |
|
name: Unknown |
|
type: unknown |
|
split: test |
|
metrics: |
|
- type: accuracy |
|
value: 0.29854096520763185 |
|
name: Accuracy |
|
--- |
|
|
|
# SetFit with nomic-ai/nomic-embed-text-v1.5 |
|
|
|
This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [nomic-ai/nomic-embed-text-v1.5](https://huggingface.co/nomic-ai/nomic-embed-text-v1.5) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification. |
|
|
|
The model has been trained using an efficient few-shot learning technique that involves: |
|
|
|
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. |
|
2. Training a classification head with features from the fine-tuned Sentence Transformer. |
|
|
|
## Model Details |
|
|
|
### Model Description |
|
- **Model Type:** SetFit |
|
- **Sentence Transformer body:** [nomic-ai/nomic-embed-text-v1.5](https://huggingface.co/nomic-ai/nomic-embed-text-v1.5) |
|
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance |
|
- **Maximum Sequence Length:** 8192 tokens |
|
- **Number of Classes:** 63 classes |
|
<!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) --> |
|
<!-- - **Language:** Unknown --> |
|
<!-- - **License:** Unknown --> |
|
|
|
### Model Sources |
|
|
|
- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit) |
|
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055) |
|
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit) |
|
|
|
### Model Labels |
|
| Label | Examples | |
|
|:------|:-------------------------------------------------------------------| |
|
| 0 | <ul><li>'Add a corporate presentation background'</li></ul> | |
|
| 1 | <ul><li>'I need some icon suggestions for this layout'</li></ul> | |
|
| 2 | <ul><li>"Add a heading that says 'Welcome'"</li></ul> | |
|
| 3 | <ul><li>'Distribute the shapes across the page'</li></ul> | |
|
| 4 | <ul><li>'Add a zoom animation to the logo'</li></ul> | |
|
| 5 | <ul><li>'Make everything fade in gradually'</li></ul> | |
|
| 6 | <ul><li>'Remove the unwanted text overlay'</li></ul> | |
|
| 7 | <ul><li>'Remove the background shape'</li></ul> | |
|
| 8 | <ul><li>'What shape options do you have?'</li></ul> | |
|
| 9 | <ul><li>'Distribute the buttons around the center image'</li></ul> | |
|
| 10 | <ul><li>'Duplicate the page structure'</li></ul> | |
|
| 11 | <ul><li>'Duplicate the icon and move it'</li></ul> | |
|
| 12 | <ul><li>'Copy the content to the final page'</li></ul> | |
|
| 13 | <ul><li>'Fix the letter spacing'</li></ul> | |
|
| 14 | <ul><li>'Mirror the logo vertically'</li></ul> | |
|
| 15 | <ul><li>'Create a photo of a mountain landscape'</li></ul> | |
|
| 16 | <ul><li>'Create a card for a birthday party'</li></ul> | |
|
| 17 | <ul><li>'Group the logo and title together'</li></ul> | |
|
| 18 | <ul><li>'Move the image to the center'</li></ul> | |
|
| 19 | <ul><li>'Apply a vintage filter to the photo'</li></ul> | |
|
| 20 | <ul><li>'Find me texture patterns'</li></ul> | |
|
| 21 | <ul><li>'Restore the previous color'</li></ul> | |
|
| 22 | <ul><li>'Remove the background from the illustration'</li></ul> | |
|
| 23 | <ul><li>'Delete the old sign'</li></ul> | |
|
| 24 | <ul><li>'Replace the old logo with a new one'</li></ul> | |
|
| 25 | <ul><li>'Replace the tagline'</li></ul> | |
|
| 26 | <ul><li>'Reset the image adjustments'</li></ul> | |
|
| 27 | <ul><li>'Scale the text up'</li></ul> | |
|
| 28 | <ul><li>'Resize to LinkedIn post dimensions'</li></ul> | |
|
| 29 | <ul><li>'Turn the logo 270 degrees'</li></ul> | |
|
| 30 | <ul><li>'Scatter the particles around the text'</li></ul> | |
|
| 31 | <ul><li>'Select the footer content'</li></ul> | |
|
| 32 | <ul><li>'Change to a light gray background'</li></ul> | |
|
| 33 | <ul><li>'Change the blend mode to color burn'</li></ul> | |
|
| 34 | <ul><li>'Blur the logo slightly'</li></ul> | |
|
| 35 | <ul><li>'Add a double border to the image'</li></ul> | |
|
| 36 | <ul><li>'Make the photo more illuminated'</li></ul> | |
|
| 37 | <ul><li>'Send the logo to the back'</li></ul> | |
|
| 38 | <ul><li>'Increase the image contrast'</li></ul> | |
|
| 39 | <ul><li>'Crop to a polygon'</li></ul> | |
|
| 40 | <ul><li>'Add a gradient shadow'</li></ul> | |
|
| 41 | <ul><li>'Change the background color to green'</li></ul> | |
|
| 42 | <ul><li>'Increase the menu font size'</li></ul> | |
|
| 43 | <ul><li>'Make the text bold and strikethrough'</li></ul> | |
|
| 44 | <ul><li>'Use a decorative font for the logo'</li></ul> | |
|
| 45 | <ul><li>'Brighten the light areas'</li></ul> | |
|
| 46 | <ul><li>'Set the picture as full background'</li></ul> | |
|
| 47 | <ul><li>'Tighten the letter spacing'</li></ul> | |
|
| 48 | <ul><li>'Add more line height'</li></ul> | |
|
| 49 | <ul><li>'Reduce the opacity of the overlay'</li></ul> | |
|
| 50 | <ul><li>'Reduce the paragraph spacing'</li></ul> | |
|
| 51 | <ul><li>'Make the colors more vibrant'</li></ul> | |
|
| 52 | <ul><li>'Make the shadows deeper'</li></ul> | |
|
| 53 | <ul><li>'Increase the image sharpness'</li></ul> | |
|
| 54 | <ul><li>'Left align the subtitle'</li></ul> | |
|
| 55 | <ul><li>'Create a text container'</li></ul> | |
|
| 56 | <ul><li>'Create text in a spiral pattern'</li></ul> | |
|
| 57 | <ul><li>'Convert to bullet point format'</li></ul> | |
|
| 58 | <ul><li>'Add a colored shadow to the text'</li></ul> | |
|
| 59 | <ul><li>'Increase the warm color cast'</li></ul> | |
|
| 60 | <ul><li>'I want to upload a new image'</li></ul> | |
|
| 61 | <ul><li>'Revert the opacity change'</li></ul> | |
|
| 62 | <ul><li>'Break apart the grouped elements'</li></ul> | |
|
|
|
## Evaluation |
|
|
|
### Metrics |
|
| Label | Accuracy | |
|
|:--------|:---------| |
|
| **all** | 0.2985 | |
|
|
|
## Uses |
|
|
|
### Direct Use for Inference |
|
|
|
First install the SetFit library: |
|
|
|
```bash |
|
pip install setfit |
|
``` |
|
|
|
Then you can load this model and run inference. |
|
|
|
```python |
|
from setfit import SetFitModel |
|
|
|
# Download from the 🤗 Hub |
|
model = SetFitModel.from_pretrained("setfit_model_id") |
|
# Run inference |
|
preds = model("Tighten the letter spacing") |
|
``` |
|
|
|
<!-- |
|
### Downstream Use |
|
|
|
*List how someone could finetune this model on their own dataset.* |
|
--> |
|
|
|
<!-- |
|
### Out-of-Scope Use |
|
|
|
*List how the model may foreseeably be misused and address what users ought not to do with the model.* |
|
--> |
|
|
|
<!-- |
|
## Bias, Risks and Limitations |
|
|
|
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* |
|
--> |
|
|
|
<!-- |
|
### Recommendations |
|
|
|
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* |
|
--> |
|
|
|
## Training Details |
|
|
|
### Training Set Metrics |
|
| Training set | Min | Median | Max | |
|
|:-------------|:----|:-------|:----| |
|
| Word count | 3 | 5.2857 | 8 | |
|
|
|
| Label | Training Sample Count | |
|
|:------|:----------------------| |
|
| 0 | 1 | |
|
| 1 | 1 | |
|
| 2 | 1 | |
|
| 3 | 1 | |
|
| 4 | 1 | |
|
| 5 | 1 | |
|
| 6 | 1 | |
|
| 7 | 1 | |
|
| 8 | 1 | |
|
| 9 | 1 | |
|
| 10 | 1 | |
|
| 11 | 1 | |
|
| 12 | 1 | |
|
| 13 | 1 | |
|
| 14 | 1 | |
|
| 15 | 1 | |
|
| 16 | 1 | |
|
| 17 | 1 | |
|
| 18 | 1 | |
|
| 19 | 1 | |
|
| 20 | 1 | |
|
| 21 | 1 | |
|
| 22 | 1 | |
|
| 23 | 1 | |
|
| 24 | 1 | |
|
| 25 | 1 | |
|
| 26 | 1 | |
|
| 27 | 1 | |
|
| 28 | 1 | |
|
| 29 | 1 | |
|
| 30 | 1 | |
|
| 31 | 1 | |
|
| 32 | 1 | |
|
| 33 | 1 | |
|
| 34 | 1 | |
|
| 35 | 1 | |
|
| 36 | 1 | |
|
| 37 | 1 | |
|
| 38 | 1 | |
|
| 39 | 1 | |
|
| 40 | 1 | |
|
| 41 | 1 | |
|
| 42 | 1 | |
|
| 43 | 1 | |
|
| 44 | 1 | |
|
| 45 | 1 | |
|
| 46 | 1 | |
|
| 47 | 1 | |
|
| 48 | 1 | |
|
| 49 | 1 | |
|
| 50 | 1 | |
|
| 51 | 1 | |
|
| 52 | 1 | |
|
| 53 | 1 | |
|
| 54 | 1 | |
|
| 55 | 1 | |
|
| 56 | 1 | |
|
| 57 | 1 | |
|
| 58 | 1 | |
|
| 59 | 1 | |
|
| 60 | 1 | |
|
| 61 | 1 | |
|
| 62 | 1 | |
|
|
|
### Training Hyperparameters |
|
- batch_size: (64, 64) |
|
- num_epochs: (1, 1) |
|
- max_steps: -1 |
|
- sampling_strategy: oversampling |
|
- body_learning_rate: (2e-05, 1e-05) |
|
- head_learning_rate: 0.01 |
|
- loss: CosineSimilarityLoss |
|
- distance_metric: cosine_distance |
|
- margin: 0.25 |
|
- end_to_end: False |
|
- use_amp: False |
|
- warmup_proportion: 0.1 |
|
- l2_weight: 0.01 |
|
- seed: 42 |
|
- eval_max_steps: -1 |
|
- load_best_model_at_end: False |
|
|
|
### Training Results |
|
| Epoch | Step | Training Loss | Validation Loss | |
|
|:------:|:----:|:-------------:|:---------------:| |
|
| 0.0161 | 1 | 0.1282 | - | |
|
| 0.8065 | 50 | 0.0118 | - | |
|
|
|
### Framework Versions |
|
- Python: 3.12.11 |
|
- SetFit: 1.1.3 |
|
- Sentence Transformers: 5.1.0 |
|
- Transformers: 4.54.1 |
|
- PyTorch: 2.7.1 |
|
- Datasets: 4.0.0 |
|
- Tokenizers: 0.21.4 |
|
|
|
## Citation |
|
|
|
### BibTeX |
|
```bibtex |
|
@article{https://doi.org/10.48550/arxiv.2209.11055, |
|
doi = {10.48550/ARXIV.2209.11055}, |
|
url = {https://arxiv.org/abs/2209.11055}, |
|
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, |
|
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, |
|
title = {Efficient Few-Shot Learning Without Prompts}, |
|
publisher = {arXiv}, |
|
year = {2022}, |
|
copyright = {Creative Commons Attribution 4.0 International} |
|
} |
|
``` |
|
|
|
<!-- |
|
## Glossary |
|
|
|
*Clearly define terms in order to be accessible across audiences.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Authors |
|
|
|
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Contact |
|
|
|
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* |
|
--> |