File size: 12,893 Bytes
44c3049
 
e848f79
 
 
 
 
359f204
 
 
 
 
e848f79
 
 
 
 
 
44c3049
e848f79
44c3049
 
e848f79
 
44c3049
e848f79
 
44c3049
 
 
7203cd0
e848f79
44c3049
 
e848f79
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
359f204
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e848f79
 
 
 
 
 
7203cd0
e848f79
 
 
 
 
 
40db897
e848f79
 
40db897
 
e848f79
40db897
 
e848f79
40db897
e848f79
 
 
359f204
40db897
 
e848f79
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
359f204
e848f79
 
 
359f204
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e848f79
 
ad01649
 
e848f79
 
 
 
 
 
 
 
 
 
7203cd0
e848f79
 
 
 
 
 
 
ad01649
 
 
 
 
e848f79
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
40db897
 
e848f79
 
40db897
e848f79
 
40db897
e848f79
 
40db897
e848f79
 
40db897
e848f79
 
40db897
e848f79
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
---
tags:
- setfit
- sentence-transformers
- text-classification
- generated_from_setfit_trainer
widget:
- text: I need some icon suggestions for this layout
- text: Tighten the letter spacing
- text: Group the logo and title together
- text: Create a photo of a mountain landscape
- text: Mirror the logo vertically
metrics:
- accuracy
pipeline_tag: text-classification
library_name: setfit
inference: true
base_model: nomic-ai/nomic-embed-text-v1.5
model-index:
- name: SetFit with nomic-ai/nomic-embed-text-v1.5
  results:
  - task:
      type: text-classification
      name: Text Classification
    dataset:
      name: Unknown
      type: unknown
      split: test
    metrics:
    - type: accuracy
      value: 0.2895622895622896
      name: Accuracy
---

# SetFit with nomic-ai/nomic-embed-text-v1.5

This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [nomic-ai/nomic-embed-text-v1.5](https://huggingface.co/nomic-ai/nomic-embed-text-v1.5) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.

The model has been trained using an efficient few-shot learning technique that involves:

1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
2. Training a classification head with features from the fine-tuned Sentence Transformer.

## Model Details

### Model Description
- **Model Type:** SetFit
- **Sentence Transformer body:** [nomic-ai/nomic-embed-text-v1.5](https://huggingface.co/nomic-ai/nomic-embed-text-v1.5)
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
- **Maximum Sequence Length:** 8192 tokens
- **Number of Classes:** 63 classes
<!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->

### Model Sources

- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)

### Model Labels
| Label | Examples                                                           |
|:------|:-------------------------------------------------------------------|
| 0     | <ul><li>'Add a corporate presentation background'</li></ul>        |
| 1     | <ul><li>'I need some icon suggestions for this layout'</li></ul>   |
| 2     | <ul><li>"Add a heading that says 'Welcome'"</li></ul>              |
| 3     | <ul><li>'Distribute the shapes across the page'</li></ul>          |
| 4     | <ul><li>'Add a zoom animation to the logo'</li></ul>               |
| 5     | <ul><li>'Make everything fade in gradually'</li></ul>              |
| 6     | <ul><li>'Remove the unwanted text overlay'</li></ul>               |
| 7     | <ul><li>'Remove the background shape'</li></ul>                    |
| 8     | <ul><li>'What shape options do you have?'</li></ul>                |
| 9     | <ul><li>'Distribute the buttons around the center image'</li></ul> |
| 10    | <ul><li>'Duplicate the page structure'</li></ul>                   |
| 11    | <ul><li>'Duplicate the icon and move it'</li></ul>                 |
| 12    | <ul><li>'Copy the content to the final page'</li></ul>             |
| 13    | <ul><li>'Fix the letter spacing'</li></ul>                         |
| 14    | <ul><li>'Mirror the logo vertically'</li></ul>                     |
| 15    | <ul><li>'Create a photo of a mountain landscape'</li></ul>         |
| 16    | <ul><li>'Create a card for a birthday party'</li></ul>             |
| 17    | <ul><li>'Group the logo and title together'</li></ul>              |
| 18    | <ul><li>'Move the image to the center'</li></ul>                   |
| 19    | <ul><li>'Apply a vintage filter to the photo'</li></ul>            |
| 20    | <ul><li>'Find me texture patterns'</li></ul>                       |
| 21    | <ul><li>'Restore the previous color'</li></ul>                     |
| 22    | <ul><li>'Remove the background from the illustration'</li></ul>    |
| 23    | <ul><li>'Delete the old sign'</li></ul>                            |
| 24    | <ul><li>'Replace the old logo with a new one'</li></ul>            |
| 25    | <ul><li>'Replace the tagline'</li></ul>                            |
| 26    | <ul><li>'Reset the image adjustments'</li></ul>                    |
| 27    | <ul><li>'Scale the text up'</li></ul>                              |
| 28    | <ul><li>'Resize to LinkedIn post dimensions'</li></ul>             |
| 29    | <ul><li>'Turn the logo 270 degrees'</li></ul>                      |
| 30    | <ul><li>'Scatter the particles around the text'</li></ul>          |
| 31    | <ul><li>'Select the footer content'</li></ul>                      |
| 32    | <ul><li>'Change to a light gray background'</li></ul>              |
| 33    | <ul><li>'Change the blend mode to color burn'</li></ul>            |
| 34    | <ul><li>'Blur the logo slightly'</li></ul>                         |
| 35    | <ul><li>'Add a double border to the image'</li></ul>               |
| 36    | <ul><li>'Make the photo more illuminated'</li></ul>                |
| 37    | <ul><li>'Send the logo to the back'</li></ul>                      |
| 38    | <ul><li>'Increase the image contrast'</li></ul>                    |
| 39    | <ul><li>'Crop to a polygon'</li></ul>                              |
| 40    | <ul><li>'Add a gradient shadow'</li></ul>                          |
| 41    | <ul><li>'Change the background color to green'</li></ul>           |
| 42    | <ul><li>'Increase the menu font size'</li></ul>                    |
| 43    | <ul><li>'Make the text bold and strikethrough'</li></ul>           |
| 44    | <ul><li>'Use a decorative font for the logo'</li></ul>             |
| 45    | <ul><li>'Brighten the light areas'</li></ul>                       |
| 46    | <ul><li>'Set the picture as full background'</li></ul>             |
| 47    | <ul><li>'Tighten the letter spacing'</li></ul>                     |
| 48    | <ul><li>'Add more line height'</li></ul>                           |
| 49    | <ul><li>'Reduce the opacity of the overlay'</li></ul>              |
| 50    | <ul><li>'Reduce the paragraph spacing'</li></ul>                   |
| 51    | <ul><li>'Make the colors more vibrant'</li></ul>                   |
| 52    | <ul><li>'Make the shadows deeper'</li></ul>                        |
| 53    | <ul><li>'Increase the image sharpness'</li></ul>                   |
| 54    | <ul><li>'Left align the subtitle'</li></ul>                        |
| 55    | <ul><li>'Create a text container'</li></ul>                        |
| 56    | <ul><li>'Create text in a spiral pattern'</li></ul>                |
| 57    | <ul><li>'Convert to bullet point format'</li></ul>                 |
| 58    | <ul><li>'Add a colored shadow to the text'</li></ul>               |
| 59    | <ul><li>'Increase the warm color cast'</li></ul>                   |
| 60    | <ul><li>'I want to upload a new image'</li></ul>                   |
| 61    | <ul><li>'Revert the opacity change'</li></ul>                      |
| 62    | <ul><li>'Break apart the grouped elements'</li></ul>               |

## Evaluation

### Metrics
| Label   | Accuracy |
|:--------|:---------|
| **all** | 0.2896   |

## Uses

### Direct Use for Inference

First install the SetFit library:

```bash
pip install setfit
```

Then you can load this model and run inference.

```python
from setfit import SetFitModel

# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("setfit_model_id")
# Run inference
preds = model("Tighten the letter spacing")
```

<!--
### Downstream Use

*List how someone could finetune this model on their own dataset.*
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Set Metrics
| Training set | Min | Median | Max |
|:-------------|:----|:-------|:----|
| Word count   | 3   | 5.2857 | 8   |

| Label | Training Sample Count |
|:------|:----------------------|
| 0     | 1                     |
| 1     | 1                     |
| 2     | 1                     |
| 3     | 1                     |
| 4     | 1                     |
| 5     | 1                     |
| 6     | 1                     |
| 7     | 1                     |
| 8     | 1                     |
| 9     | 1                     |
| 10    | 1                     |
| 11    | 1                     |
| 12    | 1                     |
| 13    | 1                     |
| 14    | 1                     |
| 15    | 1                     |
| 16    | 1                     |
| 17    | 1                     |
| 18    | 1                     |
| 19    | 1                     |
| 20    | 1                     |
| 21    | 1                     |
| 22    | 1                     |
| 23    | 1                     |
| 24    | 1                     |
| 25    | 1                     |
| 26    | 1                     |
| 27    | 1                     |
| 28    | 1                     |
| 29    | 1                     |
| 30    | 1                     |
| 31    | 1                     |
| 32    | 1                     |
| 33    | 1                     |
| 34    | 1                     |
| 35    | 1                     |
| 36    | 1                     |
| 37    | 1                     |
| 38    | 1                     |
| 39    | 1                     |
| 40    | 1                     |
| 41    | 1                     |
| 42    | 1                     |
| 43    | 1                     |
| 44    | 1                     |
| 45    | 1                     |
| 46    | 1                     |
| 47    | 1                     |
| 48    | 1                     |
| 49    | 1                     |
| 50    | 1                     |
| 51    | 1                     |
| 52    | 1                     |
| 53    | 1                     |
| 54    | 1                     |
| 55    | 1                     |
| 56    | 1                     |
| 57    | 1                     |
| 58    | 1                     |
| 59    | 1                     |
| 60    | 1                     |
| 61    | 1                     |
| 62    | 1                     |

### Training Hyperparameters
- batch_size: (32, 32)
- num_epochs: (2, 2)
- max_steps: -1
- sampling_strategy: oversampling
- body_learning_rate: (2e-05, 1e-05)
- head_learning_rate: 0.01
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- l2_weight: 0.1
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: False

### Training Results
| Epoch  | Step | Training Loss | Validation Loss |
|:------:|:----:|:-------------:|:---------------:|
| 0.0081 | 1    | 0.1179        | -               |
| 0.4065 | 50   | 0.0211        | -               |
| 0.8130 | 100  | 0.002         | -               |
| 1.2195 | 150  | 0.0011        | -               |
| 1.6260 | 200  | 0.0011        | -               |

### Framework Versions
- Python: 3.12.11
- SetFit: 1.1.3
- Sentence Transformers: 5.1.0
- Transformers: 4.54.1
- PyTorch: 2.7.1
- Datasets: 4.0.0
- Tokenizers: 0.21.4

## Citation

### BibTeX
```bibtex
@article{https://doi.org/10.48550/arxiv.2209.11055,
    doi = {10.48550/ARXIV.2209.11055},
    url = {https://arxiv.org/abs/2209.11055},
    author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
    keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
    title = {Efficient Few-Shot Learning Without Prompts},
    publisher = {arXiv},
    year = {2022},
    copyright = {Creative Commons Attribution 4.0 International}
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->