Push model using huggingface_hub.
Browse files- README.md +322 -2825
- config_setfit.json +63 -63
- model.safetensors +1 -1
- model_head.pkl +1 -1
README.md
CHANGED
|
@@ -1,2851 +1,348 @@
|
|
| 1 |
---
|
| 2 |
-
library_name: sentence-transformers
|
| 3 |
-
pipeline_tag: sentence-similarity
|
| 4 |
tags:
|
| 5 |
-
-
|
| 6 |
-
- sentence-
|
| 7 |
-
-
|
| 8 |
-
-
|
| 9 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 10 |
model-index:
|
| 11 |
-
- name:
|
| 12 |
results:
|
| 13 |
- task:
|
| 14 |
-
type:
|
|
|
|
| 15 |
dataset:
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
config: en
|
| 19 |
split: test
|
| 20 |
-
revision: e8379541af4e31359cca9fbcf4b00f2671dba205
|
| 21 |
metrics:
|
| 22 |
- type: accuracy
|
| 23 |
-
value:
|
| 24 |
-
|
| 25 |
-
value: 38.57605549557802
|
| 26 |
-
- type: f1
|
| 27 |
-
value: 69.35586565857854
|
| 28 |
-
- task:
|
| 29 |
-
type: Classification
|
| 30 |
-
dataset:
|
| 31 |
-
type: mteb/amazon_polarity
|
| 32 |
-
name: MTEB AmazonPolarityClassification
|
| 33 |
-
config: default
|
| 34 |
-
split: test
|
| 35 |
-
revision: e2d317d38cd51312af73b3d32a06d1a08b442046
|
| 36 |
-
metrics:
|
| 37 |
-
- type: accuracy
|
| 38 |
-
value: 91.8144
|
| 39 |
-
- type: ap
|
| 40 |
-
value: 88.65222882032363
|
| 41 |
-
- type: f1
|
| 42 |
-
value: 91.80426301643274
|
| 43 |
-
- task:
|
| 44 |
-
type: Classification
|
| 45 |
-
dataset:
|
| 46 |
-
type: mteb/amazon_reviews_multi
|
| 47 |
-
name: MTEB AmazonReviewsClassification (en)
|
| 48 |
-
config: en
|
| 49 |
-
split: test
|
| 50 |
-
revision: 1399c76144fd37290681b995c656ef9b2e06e26d
|
| 51 |
-
metrics:
|
| 52 |
-
- type: accuracy
|
| 53 |
-
value: 47.162000000000006
|
| 54 |
-
- type: f1
|
| 55 |
-
value: 46.59329642263158
|
| 56 |
-
- task:
|
| 57 |
-
type: Retrieval
|
| 58 |
-
dataset:
|
| 59 |
-
type: arguana
|
| 60 |
-
name: MTEB ArguAna
|
| 61 |
-
config: default
|
| 62 |
-
split: test
|
| 63 |
-
revision: None
|
| 64 |
-
metrics:
|
| 65 |
-
- type: map_at_1
|
| 66 |
-
value: 24.253
|
| 67 |
-
- type: map_at_10
|
| 68 |
-
value: 38.962
|
| 69 |
-
- type: map_at_100
|
| 70 |
-
value: 40.081
|
| 71 |
-
- type: map_at_1000
|
| 72 |
-
value: 40.089000000000006
|
| 73 |
-
- type: map_at_3
|
| 74 |
-
value: 33.499
|
| 75 |
-
- type: map_at_5
|
| 76 |
-
value: 36.351
|
| 77 |
-
- type: mrr_at_1
|
| 78 |
-
value: 24.609
|
| 79 |
-
- type: mrr_at_10
|
| 80 |
-
value: 39.099000000000004
|
| 81 |
-
- type: mrr_at_100
|
| 82 |
-
value: 40.211000000000006
|
| 83 |
-
- type: mrr_at_1000
|
| 84 |
-
value: 40.219
|
| 85 |
-
- type: mrr_at_3
|
| 86 |
-
value: 33.677
|
| 87 |
-
- type: mrr_at_5
|
| 88 |
-
value: 36.469
|
| 89 |
-
- type: ndcg_at_1
|
| 90 |
-
value: 24.253
|
| 91 |
-
- type: ndcg_at_10
|
| 92 |
-
value: 48.010999999999996
|
| 93 |
-
- type: ndcg_at_100
|
| 94 |
-
value: 52.756
|
| 95 |
-
- type: ndcg_at_1000
|
| 96 |
-
value: 52.964999999999996
|
| 97 |
-
- type: ndcg_at_3
|
| 98 |
-
value: 36.564
|
| 99 |
-
- type: ndcg_at_5
|
| 100 |
-
value: 41.711999999999996
|
| 101 |
-
- type: precision_at_1
|
| 102 |
-
value: 24.253
|
| 103 |
-
- type: precision_at_10
|
| 104 |
-
value: 7.738
|
| 105 |
-
- type: precision_at_100
|
| 106 |
-
value: 0.98
|
| 107 |
-
- type: precision_at_1000
|
| 108 |
-
value: 0.1
|
| 109 |
-
- type: precision_at_3
|
| 110 |
-
value: 15.149000000000001
|
| 111 |
-
- type: precision_at_5
|
| 112 |
-
value: 11.593
|
| 113 |
-
- type: recall_at_1
|
| 114 |
-
value: 24.253
|
| 115 |
-
- type: recall_at_10
|
| 116 |
-
value: 77.383
|
| 117 |
-
- type: recall_at_100
|
| 118 |
-
value: 98.009
|
| 119 |
-
- type: recall_at_1000
|
| 120 |
-
value: 99.644
|
| 121 |
-
- type: recall_at_3
|
| 122 |
-
value: 45.448
|
| 123 |
-
- type: recall_at_5
|
| 124 |
-
value: 57.965999999999994
|
| 125 |
-
- task:
|
| 126 |
-
type: Clustering
|
| 127 |
-
dataset:
|
| 128 |
-
type: mteb/arxiv-clustering-p2p
|
| 129 |
-
name: MTEB ArxivClusteringP2P
|
| 130 |
-
config: default
|
| 131 |
-
split: test
|
| 132 |
-
revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d
|
| 133 |
-
metrics:
|
| 134 |
-
- type: v_measure
|
| 135 |
-
value: 45.69069567851087
|
| 136 |
-
- task:
|
| 137 |
-
type: Clustering
|
| 138 |
-
dataset:
|
| 139 |
-
type: mteb/arxiv-clustering-s2s
|
| 140 |
-
name: MTEB ArxivClusteringS2S
|
| 141 |
-
config: default
|
| 142 |
-
split: test
|
| 143 |
-
revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53
|
| 144 |
-
metrics:
|
| 145 |
-
- type: v_measure
|
| 146 |
-
value: 36.35185490976283
|
| 147 |
-
- task:
|
| 148 |
-
type: Reranking
|
| 149 |
-
dataset:
|
| 150 |
-
type: mteb/askubuntudupquestions-reranking
|
| 151 |
-
name: MTEB AskUbuntuDupQuestions
|
| 152 |
-
config: default
|
| 153 |
-
split: test
|
| 154 |
-
revision: 2000358ca161889fa9c082cb41daa8dcfb161a54
|
| 155 |
-
metrics:
|
| 156 |
-
- type: map
|
| 157 |
-
value: 61.71274951450321
|
| 158 |
-
- type: mrr
|
| 159 |
-
value: 76.06032625423207
|
| 160 |
-
- task:
|
| 161 |
-
type: STS
|
| 162 |
-
dataset:
|
| 163 |
-
type: mteb/biosses-sts
|
| 164 |
-
name: MTEB BIOSSES
|
| 165 |
-
config: default
|
| 166 |
-
split: test
|
| 167 |
-
revision: d3fb88f8f02e40887cd149695127462bbcf29b4a
|
| 168 |
-
metrics:
|
| 169 |
-
- type: cos_sim_pearson
|
| 170 |
-
value: 86.73980520022269
|
| 171 |
-
- type: cos_sim_spearman
|
| 172 |
-
value: 84.24649792685918
|
| 173 |
-
- type: euclidean_pearson
|
| 174 |
-
value: 85.85197641158186
|
| 175 |
-
- type: euclidean_spearman
|
| 176 |
-
value: 84.24649792685918
|
| 177 |
-
- type: manhattan_pearson
|
| 178 |
-
value: 86.26809552711346
|
| 179 |
-
- type: manhattan_spearman
|
| 180 |
-
value: 84.56397504030865
|
| 181 |
-
- task:
|
| 182 |
-
type: Classification
|
| 183 |
-
dataset:
|
| 184 |
-
type: mteb/banking77
|
| 185 |
-
name: MTEB Banking77Classification
|
| 186 |
-
config: default
|
| 187 |
-
split: test
|
| 188 |
-
revision: 0fd18e25b25c072e09e0d92ab615fda904d66300
|
| 189 |
-
metrics:
|
| 190 |
-
- type: accuracy
|
| 191 |
-
value: 84.25324675324674
|
| 192 |
-
- type: f1
|
| 193 |
-
value: 84.17872280892557
|
| 194 |
-
- task:
|
| 195 |
-
type: Clustering
|
| 196 |
-
dataset:
|
| 197 |
-
type: mteb/biorxiv-clustering-p2p
|
| 198 |
-
name: MTEB BiorxivClusteringP2P
|
| 199 |
-
config: default
|
| 200 |
-
split: test
|
| 201 |
-
revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40
|
| 202 |
-
metrics:
|
| 203 |
-
- type: v_measure
|
| 204 |
-
value: 38.770253446400886
|
| 205 |
-
- task:
|
| 206 |
-
type: Clustering
|
| 207 |
-
dataset:
|
| 208 |
-
type: mteb/biorxiv-clustering-s2s
|
| 209 |
-
name: MTEB BiorxivClusteringS2S
|
| 210 |
-
config: default
|
| 211 |
-
split: test
|
| 212 |
-
revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908
|
| 213 |
-
metrics:
|
| 214 |
-
- type: v_measure
|
| 215 |
-
value: 32.94307095497281
|
| 216 |
-
- task:
|
| 217 |
-
type: Retrieval
|
| 218 |
-
dataset:
|
| 219 |
-
type: BeIR/cqadupstack
|
| 220 |
-
name: MTEB CQADupstackAndroidRetrieval
|
| 221 |
-
config: default
|
| 222 |
-
split: test
|
| 223 |
-
revision: None
|
| 224 |
-
metrics:
|
| 225 |
-
- type: map_at_1
|
| 226 |
-
value: 32.164
|
| 227 |
-
- type: map_at_10
|
| 228 |
-
value: 42.641
|
| 229 |
-
- type: map_at_100
|
| 230 |
-
value: 43.947
|
| 231 |
-
- type: map_at_1000
|
| 232 |
-
value: 44.074999999999996
|
| 233 |
-
- type: map_at_3
|
| 234 |
-
value: 39.592
|
| 235 |
-
- type: map_at_5
|
| 236 |
-
value: 41.204
|
| 237 |
-
- type: mrr_at_1
|
| 238 |
-
value: 39.628
|
| 239 |
-
- type: mrr_at_10
|
| 240 |
-
value: 48.625
|
| 241 |
-
- type: mrr_at_100
|
| 242 |
-
value: 49.368
|
| 243 |
-
- type: mrr_at_1000
|
| 244 |
-
value: 49.413000000000004
|
| 245 |
-
- type: mrr_at_3
|
| 246 |
-
value: 46.400000000000006
|
| 247 |
-
- type: mrr_at_5
|
| 248 |
-
value: 47.68
|
| 249 |
-
- type: ndcg_at_1
|
| 250 |
-
value: 39.628
|
| 251 |
-
- type: ndcg_at_10
|
| 252 |
-
value: 48.564
|
| 253 |
-
- type: ndcg_at_100
|
| 254 |
-
value: 53.507000000000005
|
| 255 |
-
- type: ndcg_at_1000
|
| 256 |
-
value: 55.635999999999996
|
| 257 |
-
- type: ndcg_at_3
|
| 258 |
-
value: 44.471
|
| 259 |
-
- type: ndcg_at_5
|
| 260 |
-
value: 46.137
|
| 261 |
-
- type: precision_at_1
|
| 262 |
-
value: 39.628
|
| 263 |
-
- type: precision_at_10
|
| 264 |
-
value: 8.856
|
| 265 |
-
- type: precision_at_100
|
| 266 |
-
value: 1.429
|
| 267 |
-
- type: precision_at_1000
|
| 268 |
-
value: 0.191
|
| 269 |
-
- type: precision_at_3
|
| 270 |
-
value: 21.268
|
| 271 |
-
- type: precision_at_5
|
| 272 |
-
value: 14.649000000000001
|
| 273 |
-
- type: recall_at_1
|
| 274 |
-
value: 32.164
|
| 275 |
-
- type: recall_at_10
|
| 276 |
-
value: 59.609
|
| 277 |
-
- type: recall_at_100
|
| 278 |
-
value: 80.521
|
| 279 |
-
- type: recall_at_1000
|
| 280 |
-
value: 94.245
|
| 281 |
-
- type: recall_at_3
|
| 282 |
-
value: 46.521
|
| 283 |
-
- type: recall_at_5
|
| 284 |
-
value: 52.083999999999996
|
| 285 |
-
- task:
|
| 286 |
-
type: Retrieval
|
| 287 |
-
dataset:
|
| 288 |
-
type: BeIR/cqadupstack
|
| 289 |
-
name: MTEB CQADupstackEnglishRetrieval
|
| 290 |
-
config: default
|
| 291 |
-
split: test
|
| 292 |
-
revision: None
|
| 293 |
-
metrics:
|
| 294 |
-
- type: map_at_1
|
| 295 |
-
value: 31.526
|
| 296 |
-
- type: map_at_10
|
| 297 |
-
value: 41.581
|
| 298 |
-
- type: map_at_100
|
| 299 |
-
value: 42.815999999999995
|
| 300 |
-
- type: map_at_1000
|
| 301 |
-
value: 42.936
|
| 302 |
-
- type: map_at_3
|
| 303 |
-
value: 38.605000000000004
|
| 304 |
-
- type: map_at_5
|
| 305 |
-
value: 40.351
|
| 306 |
-
- type: mrr_at_1
|
| 307 |
-
value: 39.489999999999995
|
| 308 |
-
- type: mrr_at_10
|
| 309 |
-
value: 47.829
|
| 310 |
-
- type: mrr_at_100
|
| 311 |
-
value: 48.512
|
| 312 |
-
- type: mrr_at_1000
|
| 313 |
-
value: 48.552
|
| 314 |
-
- type: mrr_at_3
|
| 315 |
-
value: 45.754
|
| 316 |
-
- type: mrr_at_5
|
| 317 |
-
value: 46.986
|
| 318 |
-
- type: ndcg_at_1
|
| 319 |
-
value: 39.489999999999995
|
| 320 |
-
- type: ndcg_at_10
|
| 321 |
-
value: 47.269
|
| 322 |
-
- type: ndcg_at_100
|
| 323 |
-
value: 51.564
|
| 324 |
-
- type: ndcg_at_1000
|
| 325 |
-
value: 53.53099999999999
|
| 326 |
-
- type: ndcg_at_3
|
| 327 |
-
value: 43.301
|
| 328 |
-
- type: ndcg_at_5
|
| 329 |
-
value: 45.239000000000004
|
| 330 |
-
- type: precision_at_1
|
| 331 |
-
value: 39.489999999999995
|
| 332 |
-
- type: precision_at_10
|
| 333 |
-
value: 8.93
|
| 334 |
-
- type: precision_at_100
|
| 335 |
-
value: 1.415
|
| 336 |
-
- type: precision_at_1000
|
| 337 |
-
value: 0.188
|
| 338 |
-
- type: precision_at_3
|
| 339 |
-
value: 20.892
|
| 340 |
-
- type: precision_at_5
|
| 341 |
-
value: 14.865999999999998
|
| 342 |
-
- type: recall_at_1
|
| 343 |
-
value: 31.526
|
| 344 |
-
- type: recall_at_10
|
| 345 |
-
value: 56.76
|
| 346 |
-
- type: recall_at_100
|
| 347 |
-
value: 75.029
|
| 348 |
-
- type: recall_at_1000
|
| 349 |
-
value: 87.491
|
| 350 |
-
- type: recall_at_3
|
| 351 |
-
value: 44.786
|
| 352 |
-
- type: recall_at_5
|
| 353 |
-
value: 50.254
|
| 354 |
-
- task:
|
| 355 |
-
type: Retrieval
|
| 356 |
-
dataset:
|
| 357 |
-
type: BeIR/cqadupstack
|
| 358 |
-
name: MTEB CQADupstackGamingRetrieval
|
| 359 |
-
config: default
|
| 360 |
-
split: test
|
| 361 |
-
revision: None
|
| 362 |
-
metrics:
|
| 363 |
-
- type: map_at_1
|
| 364 |
-
value: 40.987
|
| 365 |
-
- type: map_at_10
|
| 366 |
-
value: 52.827
|
| 367 |
-
- type: map_at_100
|
| 368 |
-
value: 53.751000000000005
|
| 369 |
-
- type: map_at_1000
|
| 370 |
-
value: 53.81
|
| 371 |
-
- type: map_at_3
|
| 372 |
-
value: 49.844
|
| 373 |
-
- type: map_at_5
|
| 374 |
-
value: 51.473
|
| 375 |
-
- type: mrr_at_1
|
| 376 |
-
value: 46.833999999999996
|
| 377 |
-
- type: mrr_at_10
|
| 378 |
-
value: 56.389
|
| 379 |
-
- type: mrr_at_100
|
| 380 |
-
value: 57.003
|
| 381 |
-
- type: mrr_at_1000
|
| 382 |
-
value: 57.034
|
| 383 |
-
- type: mrr_at_3
|
| 384 |
-
value: 54.17999999999999
|
| 385 |
-
- type: mrr_at_5
|
| 386 |
-
value: 55.486999999999995
|
| 387 |
-
- type: ndcg_at_1
|
| 388 |
-
value: 46.833999999999996
|
| 389 |
-
- type: ndcg_at_10
|
| 390 |
-
value: 58.372
|
| 391 |
-
- type: ndcg_at_100
|
| 392 |
-
value: 62.068
|
| 393 |
-
- type: ndcg_at_1000
|
| 394 |
-
value: 63.288
|
| 395 |
-
- type: ndcg_at_3
|
| 396 |
-
value: 53.400000000000006
|
| 397 |
-
- type: ndcg_at_5
|
| 398 |
-
value: 55.766000000000005
|
| 399 |
-
- type: precision_at_1
|
| 400 |
-
value: 46.833999999999996
|
| 401 |
-
- type: precision_at_10
|
| 402 |
-
value: 9.191
|
| 403 |
-
- type: precision_at_100
|
| 404 |
-
value: 1.192
|
| 405 |
-
- type: precision_at_1000
|
| 406 |
-
value: 0.134
|
| 407 |
-
- type: precision_at_3
|
| 408 |
-
value: 23.448
|
| 409 |
-
- type: precision_at_5
|
| 410 |
-
value: 15.862000000000002
|
| 411 |
-
- type: recall_at_1
|
| 412 |
-
value: 40.987
|
| 413 |
-
- type: recall_at_10
|
| 414 |
-
value: 71.146
|
| 415 |
-
- type: recall_at_100
|
| 416 |
-
value: 87.035
|
| 417 |
-
- type: recall_at_1000
|
| 418 |
-
value: 95.633
|
| 419 |
-
- type: recall_at_3
|
| 420 |
-
value: 58.025999999999996
|
| 421 |
-
- type: recall_at_5
|
| 422 |
-
value: 63.815999999999995
|
| 423 |
-
- task:
|
| 424 |
-
type: Retrieval
|
| 425 |
-
dataset:
|
| 426 |
-
type: BeIR/cqadupstack
|
| 427 |
-
name: MTEB CQADupstackGisRetrieval
|
| 428 |
-
config: default
|
| 429 |
-
split: test
|
| 430 |
-
revision: None
|
| 431 |
-
metrics:
|
| 432 |
-
- type: map_at_1
|
| 433 |
-
value: 24.587
|
| 434 |
-
- type: map_at_10
|
| 435 |
-
value: 33.114
|
| 436 |
-
- type: map_at_100
|
| 437 |
-
value: 34.043
|
| 438 |
-
- type: map_at_1000
|
| 439 |
-
value: 34.123999999999995
|
| 440 |
-
- type: map_at_3
|
| 441 |
-
value: 30.45
|
| 442 |
-
- type: map_at_5
|
| 443 |
-
value: 31.813999999999997
|
| 444 |
-
- type: mrr_at_1
|
| 445 |
-
value: 26.554
|
| 446 |
-
- type: mrr_at_10
|
| 447 |
-
value: 35.148
|
| 448 |
-
- type: mrr_at_100
|
| 449 |
-
value: 35.926
|
| 450 |
-
- type: mrr_at_1000
|
| 451 |
-
value: 35.991
|
| 452 |
-
- type: mrr_at_3
|
| 453 |
-
value: 32.599000000000004
|
| 454 |
-
- type: mrr_at_5
|
| 455 |
-
value: 33.893
|
| 456 |
-
- type: ndcg_at_1
|
| 457 |
-
value: 26.554
|
| 458 |
-
- type: ndcg_at_10
|
| 459 |
-
value: 38.132
|
| 460 |
-
- type: ndcg_at_100
|
| 461 |
-
value: 42.78
|
| 462 |
-
- type: ndcg_at_1000
|
| 463 |
-
value: 44.919
|
| 464 |
-
- type: ndcg_at_3
|
| 465 |
-
value: 32.833
|
| 466 |
-
- type: ndcg_at_5
|
| 467 |
-
value: 35.168
|
| 468 |
-
- type: precision_at_1
|
| 469 |
-
value: 26.554
|
| 470 |
-
- type: precision_at_10
|
| 471 |
-
value: 5.921
|
| 472 |
-
- type: precision_at_100
|
| 473 |
-
value: 0.8659999999999999
|
| 474 |
-
- type: precision_at_1000
|
| 475 |
-
value: 0.109
|
| 476 |
-
- type: precision_at_3
|
| 477 |
-
value: 13.861
|
| 478 |
-
- type: precision_at_5
|
| 479 |
-
value: 9.605
|
| 480 |
-
- type: recall_at_1
|
| 481 |
-
value: 24.587
|
| 482 |
-
- type: recall_at_10
|
| 483 |
-
value: 51.690000000000005
|
| 484 |
-
- type: recall_at_100
|
| 485 |
-
value: 73.428
|
| 486 |
-
- type: recall_at_1000
|
| 487 |
-
value: 89.551
|
| 488 |
-
- type: recall_at_3
|
| 489 |
-
value: 37.336999999999996
|
| 490 |
-
- type: recall_at_5
|
| 491 |
-
value: 43.047000000000004
|
| 492 |
-
- task:
|
| 493 |
-
type: Retrieval
|
| 494 |
-
dataset:
|
| 495 |
-
type: BeIR/cqadupstack
|
| 496 |
-
name: MTEB CQADupstackMathematicaRetrieval
|
| 497 |
-
config: default
|
| 498 |
-
split: test
|
| 499 |
-
revision: None
|
| 500 |
-
metrics:
|
| 501 |
-
- type: map_at_1
|
| 502 |
-
value: 16.715
|
| 503 |
-
- type: map_at_10
|
| 504 |
-
value: 24.251
|
| 505 |
-
- type: map_at_100
|
| 506 |
-
value: 25.326999999999998
|
| 507 |
-
- type: map_at_1000
|
| 508 |
-
value: 25.455
|
| 509 |
-
- type: map_at_3
|
| 510 |
-
value: 21.912000000000003
|
| 511 |
-
- type: map_at_5
|
| 512 |
-
value: 23.257
|
| 513 |
-
- type: mrr_at_1
|
| 514 |
-
value: 20.274
|
| 515 |
-
- type: mrr_at_10
|
| 516 |
-
value: 28.552
|
| 517 |
-
- type: mrr_at_100
|
| 518 |
-
value: 29.42
|
| 519 |
-
- type: mrr_at_1000
|
| 520 |
-
value: 29.497
|
| 521 |
-
- type: mrr_at_3
|
| 522 |
-
value: 26.14
|
| 523 |
-
- type: mrr_at_5
|
| 524 |
-
value: 27.502
|
| 525 |
-
- type: ndcg_at_1
|
| 526 |
-
value: 20.274
|
| 527 |
-
- type: ndcg_at_10
|
| 528 |
-
value: 29.088
|
| 529 |
-
- type: ndcg_at_100
|
| 530 |
-
value: 34.293
|
| 531 |
-
- type: ndcg_at_1000
|
| 532 |
-
value: 37.271
|
| 533 |
-
- type: ndcg_at_3
|
| 534 |
-
value: 24.708
|
| 535 |
-
- type: ndcg_at_5
|
| 536 |
-
value: 26.809
|
| 537 |
-
- type: precision_at_1
|
| 538 |
-
value: 20.274
|
| 539 |
-
- type: precision_at_10
|
| 540 |
-
value: 5.361
|
| 541 |
-
- type: precision_at_100
|
| 542 |
-
value: 0.915
|
| 543 |
-
- type: precision_at_1000
|
| 544 |
-
value: 0.13
|
| 545 |
-
- type: precision_at_3
|
| 546 |
-
value: 11.733
|
| 547 |
-
- type: precision_at_5
|
| 548 |
-
value: 8.556999999999999
|
| 549 |
-
- type: recall_at_1
|
| 550 |
-
value: 16.715
|
| 551 |
-
- type: recall_at_10
|
| 552 |
-
value: 39.587
|
| 553 |
-
- type: recall_at_100
|
| 554 |
-
value: 62.336000000000006
|
| 555 |
-
- type: recall_at_1000
|
| 556 |
-
value: 83.453
|
| 557 |
-
- type: recall_at_3
|
| 558 |
-
value: 27.839999999999996
|
| 559 |
-
- type: recall_at_5
|
| 560 |
-
value: 32.952999999999996
|
| 561 |
-
- task:
|
| 562 |
-
type: Retrieval
|
| 563 |
-
dataset:
|
| 564 |
-
type: BeIR/cqadupstack
|
| 565 |
-
name: MTEB CQADupstackPhysicsRetrieval
|
| 566 |
-
config: default
|
| 567 |
-
split: test
|
| 568 |
-
revision: None
|
| 569 |
-
metrics:
|
| 570 |
-
- type: map_at_1
|
| 571 |
-
value: 28.793000000000003
|
| 572 |
-
- type: map_at_10
|
| 573 |
-
value: 38.582
|
| 574 |
-
- type: map_at_100
|
| 575 |
-
value: 39.881
|
| 576 |
-
- type: map_at_1000
|
| 577 |
-
value: 39.987
|
| 578 |
-
- type: map_at_3
|
| 579 |
-
value: 35.851
|
| 580 |
-
- type: map_at_5
|
| 581 |
-
value: 37.289
|
| 582 |
-
- type: mrr_at_1
|
| 583 |
-
value: 34.455999999999996
|
| 584 |
-
- type: mrr_at_10
|
| 585 |
-
value: 43.909
|
| 586 |
-
- type: mrr_at_100
|
| 587 |
-
value: 44.74
|
| 588 |
-
- type: mrr_at_1000
|
| 589 |
-
value: 44.786
|
| 590 |
-
- type: mrr_at_3
|
| 591 |
-
value: 41.659
|
| 592 |
-
- type: mrr_at_5
|
| 593 |
-
value: 43.010999999999996
|
| 594 |
-
- type: ndcg_at_1
|
| 595 |
-
value: 34.455999999999996
|
| 596 |
-
- type: ndcg_at_10
|
| 597 |
-
value: 44.266
|
| 598 |
-
- type: ndcg_at_100
|
| 599 |
-
value: 49.639
|
| 600 |
-
- type: ndcg_at_1000
|
| 601 |
-
value: 51.644
|
| 602 |
-
- type: ndcg_at_3
|
| 603 |
-
value: 39.865
|
| 604 |
-
- type: ndcg_at_5
|
| 605 |
-
value: 41.887
|
| 606 |
-
- type: precision_at_1
|
| 607 |
-
value: 34.455999999999996
|
| 608 |
-
- type: precision_at_10
|
| 609 |
-
value: 7.843999999999999
|
| 610 |
-
- type: precision_at_100
|
| 611 |
-
value: 1.243
|
| 612 |
-
- type: precision_at_1000
|
| 613 |
-
value: 0.158
|
| 614 |
-
- type: precision_at_3
|
| 615 |
-
value: 18.831999999999997
|
| 616 |
-
- type: precision_at_5
|
| 617 |
-
value: 13.147
|
| 618 |
-
- type: recall_at_1
|
| 619 |
-
value: 28.793000000000003
|
| 620 |
-
- type: recall_at_10
|
| 621 |
-
value: 55.68300000000001
|
| 622 |
-
- type: recall_at_100
|
| 623 |
-
value: 77.99000000000001
|
| 624 |
-
- type: recall_at_1000
|
| 625 |
-
value: 91.183
|
| 626 |
-
- type: recall_at_3
|
| 627 |
-
value: 43.293
|
| 628 |
-
- type: recall_at_5
|
| 629 |
-
value: 48.618
|
| 630 |
-
- task:
|
| 631 |
-
type: Retrieval
|
| 632 |
-
dataset:
|
| 633 |
-
type: BeIR/cqadupstack
|
| 634 |
-
name: MTEB CQADupstackProgrammersRetrieval
|
| 635 |
-
config: default
|
| 636 |
-
split: test
|
| 637 |
-
revision: None
|
| 638 |
-
metrics:
|
| 639 |
-
- type: map_at_1
|
| 640 |
-
value: 25.907000000000004
|
| 641 |
-
- type: map_at_10
|
| 642 |
-
value: 35.519
|
| 643 |
-
- type: map_at_100
|
| 644 |
-
value: 36.806
|
| 645 |
-
- type: map_at_1000
|
| 646 |
-
value: 36.912
|
| 647 |
-
- type: map_at_3
|
| 648 |
-
value: 32.748
|
| 649 |
-
- type: map_at_5
|
| 650 |
-
value: 34.232
|
| 651 |
-
- type: mrr_at_1
|
| 652 |
-
value: 31.621
|
| 653 |
-
- type: mrr_at_10
|
| 654 |
-
value: 40.687
|
| 655 |
-
- type: mrr_at_100
|
| 656 |
-
value: 41.583
|
| 657 |
-
- type: mrr_at_1000
|
| 658 |
-
value: 41.638999999999996
|
| 659 |
-
- type: mrr_at_3
|
| 660 |
-
value: 38.527
|
| 661 |
-
- type: mrr_at_5
|
| 662 |
-
value: 39.612
|
| 663 |
-
- type: ndcg_at_1
|
| 664 |
-
value: 31.621
|
| 665 |
-
- type: ndcg_at_10
|
| 666 |
-
value: 41.003
|
| 667 |
-
- type: ndcg_at_100
|
| 668 |
-
value: 46.617999999999995
|
| 669 |
-
- type: ndcg_at_1000
|
| 670 |
-
value: 48.82
|
| 671 |
-
- type: ndcg_at_3
|
| 672 |
-
value: 36.542
|
| 673 |
-
- type: ndcg_at_5
|
| 674 |
-
value: 38.368
|
| 675 |
-
- type: precision_at_1
|
| 676 |
-
value: 31.621
|
| 677 |
-
- type: precision_at_10
|
| 678 |
-
value: 7.396999999999999
|
| 679 |
-
- type: precision_at_100
|
| 680 |
-
value: 1.191
|
| 681 |
-
- type: precision_at_1000
|
| 682 |
-
value: 0.153
|
| 683 |
-
- type: precision_at_3
|
| 684 |
-
value: 17.39
|
| 685 |
-
- type: precision_at_5
|
| 686 |
-
value: 12.1
|
| 687 |
-
- type: recall_at_1
|
| 688 |
-
value: 25.907000000000004
|
| 689 |
-
- type: recall_at_10
|
| 690 |
-
value: 52.115
|
| 691 |
-
- type: recall_at_100
|
| 692 |
-
value: 76.238
|
| 693 |
-
- type: recall_at_1000
|
| 694 |
-
value: 91.218
|
| 695 |
-
- type: recall_at_3
|
| 696 |
-
value: 39.417
|
| 697 |
-
- type: recall_at_5
|
| 698 |
-
value: 44.435
|
| 699 |
-
- task:
|
| 700 |
-
type: Retrieval
|
| 701 |
-
dataset:
|
| 702 |
-
type: BeIR/cqadupstack
|
| 703 |
-
name: MTEB CQADupstackRetrieval
|
| 704 |
-
config: default
|
| 705 |
-
split: test
|
| 706 |
-
revision: None
|
| 707 |
-
metrics:
|
| 708 |
-
- type: map_at_1
|
| 709 |
-
value: 25.732166666666668
|
| 710 |
-
- type: map_at_10
|
| 711 |
-
value: 34.51616666666667
|
| 712 |
-
- type: map_at_100
|
| 713 |
-
value: 35.67241666666666
|
| 714 |
-
- type: map_at_1000
|
| 715 |
-
value: 35.78675
|
| 716 |
-
- type: map_at_3
|
| 717 |
-
value: 31.953416666666662
|
| 718 |
-
- type: map_at_5
|
| 719 |
-
value: 33.333
|
| 720 |
-
- type: mrr_at_1
|
| 721 |
-
value: 30.300166666666673
|
| 722 |
-
- type: mrr_at_10
|
| 723 |
-
value: 38.6255
|
| 724 |
-
- type: mrr_at_100
|
| 725 |
-
value: 39.46183333333334
|
| 726 |
-
- type: mrr_at_1000
|
| 727 |
-
value: 39.519999999999996
|
| 728 |
-
- type: mrr_at_3
|
| 729 |
-
value: 36.41299999999999
|
| 730 |
-
- type: mrr_at_5
|
| 731 |
-
value: 37.6365
|
| 732 |
-
- type: ndcg_at_1
|
| 733 |
-
value: 30.300166666666673
|
| 734 |
-
- type: ndcg_at_10
|
| 735 |
-
value: 39.61466666666667
|
| 736 |
-
- type: ndcg_at_100
|
| 737 |
-
value: 44.60808333333334
|
| 738 |
-
- type: ndcg_at_1000
|
| 739 |
-
value: 46.91708333333334
|
| 740 |
-
- type: ndcg_at_3
|
| 741 |
-
value: 35.26558333333333
|
| 742 |
-
- type: ndcg_at_5
|
| 743 |
-
value: 37.220000000000006
|
| 744 |
-
- type: precision_at_1
|
| 745 |
-
value: 30.300166666666673
|
| 746 |
-
- type: precision_at_10
|
| 747 |
-
value: 6.837416666666667
|
| 748 |
-
- type: precision_at_100
|
| 749 |
-
value: 1.10425
|
| 750 |
-
- type: precision_at_1000
|
| 751 |
-
value: 0.14875
|
| 752 |
-
- type: precision_at_3
|
| 753 |
-
value: 16.13716666666667
|
| 754 |
-
- type: precision_at_5
|
| 755 |
-
value: 11.2815
|
| 756 |
-
- type: recall_at_1
|
| 757 |
-
value: 25.732166666666668
|
| 758 |
-
- type: recall_at_10
|
| 759 |
-
value: 50.578916666666665
|
| 760 |
-
- type: recall_at_100
|
| 761 |
-
value: 72.42183333333334
|
| 762 |
-
- type: recall_at_1000
|
| 763 |
-
value: 88.48766666666667
|
| 764 |
-
- type: recall_at_3
|
| 765 |
-
value: 38.41325
|
| 766 |
-
- type: recall_at_5
|
| 767 |
-
value: 43.515750000000004
|
| 768 |
-
- task:
|
| 769 |
-
type: Retrieval
|
| 770 |
-
dataset:
|
| 771 |
-
type: BeIR/cqadupstack
|
| 772 |
-
name: MTEB CQADupstackStatsRetrieval
|
| 773 |
-
config: default
|
| 774 |
-
split: test
|
| 775 |
-
revision: None
|
| 776 |
-
metrics:
|
| 777 |
-
- type: map_at_1
|
| 778 |
-
value: 23.951
|
| 779 |
-
- type: map_at_10
|
| 780 |
-
value: 30.974
|
| 781 |
-
- type: map_at_100
|
| 782 |
-
value: 31.804
|
| 783 |
-
- type: map_at_1000
|
| 784 |
-
value: 31.900000000000002
|
| 785 |
-
- type: map_at_3
|
| 786 |
-
value: 28.762
|
| 787 |
-
- type: map_at_5
|
| 788 |
-
value: 29.94
|
| 789 |
-
- type: mrr_at_1
|
| 790 |
-
value: 26.534000000000002
|
| 791 |
-
- type: mrr_at_10
|
| 792 |
-
value: 33.553
|
| 793 |
-
- type: mrr_at_100
|
| 794 |
-
value: 34.297
|
| 795 |
-
- type: mrr_at_1000
|
| 796 |
-
value: 34.36
|
| 797 |
-
- type: mrr_at_3
|
| 798 |
-
value: 31.391000000000002
|
| 799 |
-
- type: mrr_at_5
|
| 800 |
-
value: 32.525999999999996
|
| 801 |
-
- type: ndcg_at_1
|
| 802 |
-
value: 26.534000000000002
|
| 803 |
-
- type: ndcg_at_10
|
| 804 |
-
value: 35.112
|
| 805 |
-
- type: ndcg_at_100
|
| 806 |
-
value: 39.28
|
| 807 |
-
- type: ndcg_at_1000
|
| 808 |
-
value: 41.723
|
| 809 |
-
- type: ndcg_at_3
|
| 810 |
-
value: 30.902
|
| 811 |
-
- type: ndcg_at_5
|
| 812 |
-
value: 32.759
|
| 813 |
-
- type: precision_at_1
|
| 814 |
-
value: 26.534000000000002
|
| 815 |
-
- type: precision_at_10
|
| 816 |
-
value: 5.445
|
| 817 |
-
- type: precision_at_100
|
| 818 |
-
value: 0.819
|
| 819 |
-
- type: precision_at_1000
|
| 820 |
-
value: 0.11
|
| 821 |
-
- type: precision_at_3
|
| 822 |
-
value: 12.986
|
| 823 |
-
- type: precision_at_5
|
| 824 |
-
value: 9.049
|
| 825 |
-
- type: recall_at_1
|
| 826 |
-
value: 23.951
|
| 827 |
-
- type: recall_at_10
|
| 828 |
-
value: 45.24
|
| 829 |
-
- type: recall_at_100
|
| 830 |
-
value: 64.12299999999999
|
| 831 |
-
- type: recall_at_1000
|
| 832 |
-
value: 82.28999999999999
|
| 833 |
-
- type: recall_at_3
|
| 834 |
-
value: 33.806000000000004
|
| 835 |
-
- type: recall_at_5
|
| 836 |
-
value: 38.277
|
| 837 |
-
- task:
|
| 838 |
-
type: Retrieval
|
| 839 |
-
dataset:
|
| 840 |
-
type: BeIR/cqadupstack
|
| 841 |
-
name: MTEB CQADupstackTexRetrieval
|
| 842 |
-
config: default
|
| 843 |
-
split: test
|
| 844 |
-
revision: None
|
| 845 |
-
metrics:
|
| 846 |
-
- type: map_at_1
|
| 847 |
-
value: 16.829
|
| 848 |
-
- type: map_at_10
|
| 849 |
-
value: 23.684
|
| 850 |
-
- type: map_at_100
|
| 851 |
-
value: 24.683
|
| 852 |
-
- type: map_at_1000
|
| 853 |
-
value: 24.81
|
| 854 |
-
- type: map_at_3
|
| 855 |
-
value: 21.554000000000002
|
| 856 |
-
- type: map_at_5
|
| 857 |
-
value: 22.768
|
| 858 |
-
- type: mrr_at_1
|
| 859 |
-
value: 20.096
|
| 860 |
-
- type: mrr_at_10
|
| 861 |
-
value: 27.230999999999998
|
| 862 |
-
- type: mrr_at_100
|
| 863 |
-
value: 28.083999999999996
|
| 864 |
-
- type: mrr_at_1000
|
| 865 |
-
value: 28.166000000000004
|
| 866 |
-
- type: mrr_at_3
|
| 867 |
-
value: 25.212
|
| 868 |
-
- type: mrr_at_5
|
| 869 |
-
value: 26.32
|
| 870 |
-
- type: ndcg_at_1
|
| 871 |
-
value: 20.096
|
| 872 |
-
- type: ndcg_at_10
|
| 873 |
-
value: 27.989000000000004
|
| 874 |
-
- type: ndcg_at_100
|
| 875 |
-
value: 32.847
|
| 876 |
-
- type: ndcg_at_1000
|
| 877 |
-
value: 35.896
|
| 878 |
-
- type: ndcg_at_3
|
| 879 |
-
value: 24.116
|
| 880 |
-
- type: ndcg_at_5
|
| 881 |
-
value: 25.964
|
| 882 |
-
- type: precision_at_1
|
| 883 |
-
value: 20.096
|
| 884 |
-
- type: precision_at_10
|
| 885 |
-
value: 5
|
| 886 |
-
- type: precision_at_100
|
| 887 |
-
value: 0.8750000000000001
|
| 888 |
-
- type: precision_at_1000
|
| 889 |
-
value: 0.131
|
| 890 |
-
- type: precision_at_3
|
| 891 |
-
value: 11.207
|
| 892 |
-
- type: precision_at_5
|
| 893 |
-
value: 8.08
|
| 894 |
-
- type: recall_at_1
|
| 895 |
-
value: 16.829
|
| 896 |
-
- type: recall_at_10
|
| 897 |
-
value: 37.407000000000004
|
| 898 |
-
- type: recall_at_100
|
| 899 |
-
value: 59.101000000000006
|
| 900 |
-
- type: recall_at_1000
|
| 901 |
-
value: 81.024
|
| 902 |
-
- type: recall_at_3
|
| 903 |
-
value: 26.739
|
| 904 |
-
- type: recall_at_5
|
| 905 |
-
value: 31.524
|
| 906 |
-
- task:
|
| 907 |
-
type: Retrieval
|
| 908 |
-
dataset:
|
| 909 |
-
type: BeIR/cqadupstack
|
| 910 |
-
name: MTEB CQADupstackUnixRetrieval
|
| 911 |
-
config: default
|
| 912 |
-
split: test
|
| 913 |
-
revision: None
|
| 914 |
-
metrics:
|
| 915 |
-
- type: map_at_1
|
| 916 |
-
value: 24.138
|
| 917 |
-
- type: map_at_10
|
| 918 |
-
value: 32.275999999999996
|
| 919 |
-
- type: map_at_100
|
| 920 |
-
value: 33.416000000000004
|
| 921 |
-
- type: map_at_1000
|
| 922 |
-
value: 33.527
|
| 923 |
-
- type: map_at_3
|
| 924 |
-
value: 29.854000000000003
|
| 925 |
-
- type: map_at_5
|
| 926 |
-
value: 31.096
|
| 927 |
-
- type: mrr_at_1
|
| 928 |
-
value: 28.450999999999997
|
| 929 |
-
- type: mrr_at_10
|
| 930 |
-
value: 36.214
|
| 931 |
-
- type: mrr_at_100
|
| 932 |
-
value: 37.134
|
| 933 |
-
- type: mrr_at_1000
|
| 934 |
-
value: 37.198
|
| 935 |
-
- type: mrr_at_3
|
| 936 |
-
value: 34.001999999999995
|
| 937 |
-
- type: mrr_at_5
|
| 938 |
-
value: 35.187000000000005
|
| 939 |
-
- type: ndcg_at_1
|
| 940 |
-
value: 28.450999999999997
|
| 941 |
-
- type: ndcg_at_10
|
| 942 |
-
value: 37.166
|
| 943 |
-
- type: ndcg_at_100
|
| 944 |
-
value: 42.454
|
| 945 |
-
- type: ndcg_at_1000
|
| 946 |
-
value: 44.976
|
| 947 |
-
- type: ndcg_at_3
|
| 948 |
-
value: 32.796
|
| 949 |
-
- type: ndcg_at_5
|
| 950 |
-
value: 34.631
|
| 951 |
-
- type: precision_at_1
|
| 952 |
-
value: 28.450999999999997
|
| 953 |
-
- type: precision_at_10
|
| 954 |
-
value: 6.241
|
| 955 |
-
- type: precision_at_100
|
| 956 |
-
value: 0.9950000000000001
|
| 957 |
-
- type: precision_at_1000
|
| 958 |
-
value: 0.133
|
| 959 |
-
- type: precision_at_3
|
| 960 |
-
value: 14.801
|
| 961 |
-
- type: precision_at_5
|
| 962 |
-
value: 10.280000000000001
|
| 963 |
-
- type: recall_at_1
|
| 964 |
-
value: 24.138
|
| 965 |
-
- type: recall_at_10
|
| 966 |
-
value: 48.111
|
| 967 |
-
- type: recall_at_100
|
| 968 |
-
value: 71.245
|
| 969 |
-
- type: recall_at_1000
|
| 970 |
-
value: 88.986
|
| 971 |
-
- type: recall_at_3
|
| 972 |
-
value: 36.119
|
| 973 |
-
- type: recall_at_5
|
| 974 |
-
value: 40.846
|
| 975 |
-
- task:
|
| 976 |
-
type: Retrieval
|
| 977 |
-
dataset:
|
| 978 |
-
type: BeIR/cqadupstack
|
| 979 |
-
name: MTEB CQADupstackWebmastersRetrieval
|
| 980 |
-
config: default
|
| 981 |
-
split: test
|
| 982 |
-
revision: None
|
| 983 |
-
metrics:
|
| 984 |
-
- type: map_at_1
|
| 985 |
-
value: 23.244
|
| 986 |
-
- type: map_at_10
|
| 987 |
-
value: 31.227
|
| 988 |
-
- type: map_at_100
|
| 989 |
-
value: 33.007
|
| 990 |
-
- type: map_at_1000
|
| 991 |
-
value: 33.223
|
| 992 |
-
- type: map_at_3
|
| 993 |
-
value: 28.924
|
| 994 |
-
- type: map_at_5
|
| 995 |
-
value: 30.017
|
| 996 |
-
- type: mrr_at_1
|
| 997 |
-
value: 27.668
|
| 998 |
-
- type: mrr_at_10
|
| 999 |
-
value: 35.524
|
| 1000 |
-
- type: mrr_at_100
|
| 1001 |
-
value: 36.699
|
| 1002 |
-
- type: mrr_at_1000
|
| 1003 |
-
value: 36.759
|
| 1004 |
-
- type: mrr_at_3
|
| 1005 |
-
value: 33.366
|
| 1006 |
-
- type: mrr_at_5
|
| 1007 |
-
value: 34.552
|
| 1008 |
-
- type: ndcg_at_1
|
| 1009 |
-
value: 27.668
|
| 1010 |
-
- type: ndcg_at_10
|
| 1011 |
-
value: 36.381
|
| 1012 |
-
- type: ndcg_at_100
|
| 1013 |
-
value: 43.062
|
| 1014 |
-
- type: ndcg_at_1000
|
| 1015 |
-
value: 45.656
|
| 1016 |
-
- type: ndcg_at_3
|
| 1017 |
-
value: 32.501999999999995
|
| 1018 |
-
- type: ndcg_at_5
|
| 1019 |
-
value: 34.105999999999995
|
| 1020 |
-
- type: precision_at_1
|
| 1021 |
-
value: 27.668
|
| 1022 |
-
- type: precision_at_10
|
| 1023 |
-
value: 6.798
|
| 1024 |
-
- type: precision_at_100
|
| 1025 |
-
value: 1.492
|
| 1026 |
-
- type: precision_at_1000
|
| 1027 |
-
value: 0.234
|
| 1028 |
-
- type: precision_at_3
|
| 1029 |
-
value: 15.152
|
| 1030 |
-
- type: precision_at_5
|
| 1031 |
-
value: 10.791
|
| 1032 |
-
- type: recall_at_1
|
| 1033 |
-
value: 23.244
|
| 1034 |
-
- type: recall_at_10
|
| 1035 |
-
value: 45.979
|
| 1036 |
-
- type: recall_at_100
|
| 1037 |
-
value: 74.822
|
| 1038 |
-
- type: recall_at_1000
|
| 1039 |
-
value: 91.078
|
| 1040 |
-
- type: recall_at_3
|
| 1041 |
-
value: 34.925
|
| 1042 |
-
- type: recall_at_5
|
| 1043 |
-
value: 39.126
|
| 1044 |
-
- task:
|
| 1045 |
-
type: Retrieval
|
| 1046 |
-
dataset:
|
| 1047 |
-
type: BeIR/cqadupstack
|
| 1048 |
-
name: MTEB CQADupstackWordpressRetrieval
|
| 1049 |
-
config: default
|
| 1050 |
-
split: test
|
| 1051 |
-
revision: None
|
| 1052 |
-
metrics:
|
| 1053 |
-
- type: map_at_1
|
| 1054 |
-
value: 19.945
|
| 1055 |
-
- type: map_at_10
|
| 1056 |
-
value: 27.517999999999997
|
| 1057 |
-
- type: map_at_100
|
| 1058 |
-
value: 28.588
|
| 1059 |
-
- type: map_at_1000
|
| 1060 |
-
value: 28.682000000000002
|
| 1061 |
-
- type: map_at_3
|
| 1062 |
-
value: 25.345000000000002
|
| 1063 |
-
- type: map_at_5
|
| 1064 |
-
value: 26.555
|
| 1065 |
-
- type: mrr_at_1
|
| 1066 |
-
value: 21.996
|
| 1067 |
-
- type: mrr_at_10
|
| 1068 |
-
value: 29.845
|
| 1069 |
-
- type: mrr_at_100
|
| 1070 |
-
value: 30.775999999999996
|
| 1071 |
-
- type: mrr_at_1000
|
| 1072 |
-
value: 30.845
|
| 1073 |
-
- type: mrr_at_3
|
| 1074 |
-
value: 27.726
|
| 1075 |
-
- type: mrr_at_5
|
| 1076 |
-
value: 28.882
|
| 1077 |
-
- type: ndcg_at_1
|
| 1078 |
-
value: 21.996
|
| 1079 |
-
- type: ndcg_at_10
|
| 1080 |
-
value: 32.034
|
| 1081 |
-
- type: ndcg_at_100
|
| 1082 |
-
value: 37.185
|
| 1083 |
-
- type: ndcg_at_1000
|
| 1084 |
-
value: 39.645
|
| 1085 |
-
- type: ndcg_at_3
|
| 1086 |
-
value: 27.750999999999998
|
| 1087 |
-
- type: ndcg_at_5
|
| 1088 |
-
value: 29.805999999999997
|
| 1089 |
-
- type: precision_at_1
|
| 1090 |
-
value: 21.996
|
| 1091 |
-
- type: precision_at_10
|
| 1092 |
-
value: 5.065
|
| 1093 |
-
- type: precision_at_100
|
| 1094 |
-
value: 0.819
|
| 1095 |
-
- type: precision_at_1000
|
| 1096 |
-
value: 0.11399999999999999
|
| 1097 |
-
- type: precision_at_3
|
| 1098 |
-
value: 12.076
|
| 1099 |
-
- type: precision_at_5
|
| 1100 |
-
value: 8.392
|
| 1101 |
-
- type: recall_at_1
|
| 1102 |
-
value: 19.945
|
| 1103 |
-
- type: recall_at_10
|
| 1104 |
-
value: 43.62
|
| 1105 |
-
- type: recall_at_100
|
| 1106 |
-
value: 67.194
|
| 1107 |
-
- type: recall_at_1000
|
| 1108 |
-
value: 85.7
|
| 1109 |
-
- type: recall_at_3
|
| 1110 |
-
value: 32.15
|
| 1111 |
-
- type: recall_at_5
|
| 1112 |
-
value: 37.208999999999996
|
| 1113 |
-
- task:
|
| 1114 |
-
type: Retrieval
|
| 1115 |
-
dataset:
|
| 1116 |
-
type: climate-fever
|
| 1117 |
-
name: MTEB ClimateFEVER
|
| 1118 |
-
config: default
|
| 1119 |
-
split: test
|
| 1120 |
-
revision: None
|
| 1121 |
-
metrics:
|
| 1122 |
-
- type: map_at_1
|
| 1123 |
-
value: 18.279
|
| 1124 |
-
- type: map_at_10
|
| 1125 |
-
value: 31.052999999999997
|
| 1126 |
-
- type: map_at_100
|
| 1127 |
-
value: 33.125
|
| 1128 |
-
- type: map_at_1000
|
| 1129 |
-
value: 33.306000000000004
|
| 1130 |
-
- type: map_at_3
|
| 1131 |
-
value: 26.208
|
| 1132 |
-
- type: map_at_5
|
| 1133 |
-
value: 28.857
|
| 1134 |
-
- type: mrr_at_1
|
| 1135 |
-
value: 42.671
|
| 1136 |
-
- type: mrr_at_10
|
| 1137 |
-
value: 54.557
|
| 1138 |
-
- type: mrr_at_100
|
| 1139 |
-
value: 55.142
|
| 1140 |
-
- type: mrr_at_1000
|
| 1141 |
-
value: 55.169000000000004
|
| 1142 |
-
- type: mrr_at_3
|
| 1143 |
-
value: 51.488
|
| 1144 |
-
- type: mrr_at_5
|
| 1145 |
-
value: 53.439
|
| 1146 |
-
- type: ndcg_at_1
|
| 1147 |
-
value: 42.671
|
| 1148 |
-
- type: ndcg_at_10
|
| 1149 |
-
value: 41.276
|
| 1150 |
-
- type: ndcg_at_100
|
| 1151 |
-
value: 48.376000000000005
|
| 1152 |
-
- type: ndcg_at_1000
|
| 1153 |
-
value: 51.318
|
| 1154 |
-
- type: ndcg_at_3
|
| 1155 |
-
value: 35.068
|
| 1156 |
-
- type: ndcg_at_5
|
| 1157 |
-
value: 37.242
|
| 1158 |
-
- type: precision_at_1
|
| 1159 |
-
value: 42.671
|
| 1160 |
-
- type: precision_at_10
|
| 1161 |
-
value: 12.638
|
| 1162 |
-
- type: precision_at_100
|
| 1163 |
-
value: 2.045
|
| 1164 |
-
- type: precision_at_1000
|
| 1165 |
-
value: 0.26
|
| 1166 |
-
- type: precision_at_3
|
| 1167 |
-
value: 26.08
|
| 1168 |
-
- type: precision_at_5
|
| 1169 |
-
value: 19.805
|
| 1170 |
-
- type: recall_at_1
|
| 1171 |
-
value: 18.279
|
| 1172 |
-
- type: recall_at_10
|
| 1173 |
-
value: 46.946
|
| 1174 |
-
- type: recall_at_100
|
| 1175 |
-
value: 70.97200000000001
|
| 1176 |
-
- type: recall_at_1000
|
| 1177 |
-
value: 87.107
|
| 1178 |
-
- type: recall_at_3
|
| 1179 |
-
value: 31.147999999999996
|
| 1180 |
-
- type: recall_at_5
|
| 1181 |
-
value: 38.099
|
| 1182 |
-
- task:
|
| 1183 |
-
type: Retrieval
|
| 1184 |
-
dataset:
|
| 1185 |
-
type: dbpedia-entity
|
| 1186 |
-
name: MTEB DBPedia
|
| 1187 |
-
config: default
|
| 1188 |
-
split: test
|
| 1189 |
-
revision: None
|
| 1190 |
-
metrics:
|
| 1191 |
-
- type: map_at_1
|
| 1192 |
-
value: 8.573
|
| 1193 |
-
- type: map_at_10
|
| 1194 |
-
value: 19.747
|
| 1195 |
-
- type: map_at_100
|
| 1196 |
-
value: 28.205000000000002
|
| 1197 |
-
- type: map_at_1000
|
| 1198 |
-
value: 29.831000000000003
|
| 1199 |
-
- type: map_at_3
|
| 1200 |
-
value: 14.109
|
| 1201 |
-
- type: map_at_5
|
| 1202 |
-
value: 16.448999999999998
|
| 1203 |
-
- type: mrr_at_1
|
| 1204 |
-
value: 71
|
| 1205 |
-
- type: mrr_at_10
|
| 1206 |
-
value: 77.68599999999999
|
| 1207 |
-
- type: mrr_at_100
|
| 1208 |
-
value: 77.995
|
| 1209 |
-
- type: mrr_at_1000
|
| 1210 |
-
value: 78.00200000000001
|
| 1211 |
-
- type: mrr_at_3
|
| 1212 |
-
value: 76.292
|
| 1213 |
-
- type: mrr_at_5
|
| 1214 |
-
value: 77.029
|
| 1215 |
-
- type: ndcg_at_1
|
| 1216 |
-
value: 59.12500000000001
|
| 1217 |
-
- type: ndcg_at_10
|
| 1218 |
-
value: 43.9
|
| 1219 |
-
- type: ndcg_at_100
|
| 1220 |
-
value: 47.863
|
| 1221 |
-
- type: ndcg_at_1000
|
| 1222 |
-
value: 54.848
|
| 1223 |
-
- type: ndcg_at_3
|
| 1224 |
-
value: 49.803999999999995
|
| 1225 |
-
- type: ndcg_at_5
|
| 1226 |
-
value: 46.317
|
| 1227 |
-
- type: precision_at_1
|
| 1228 |
-
value: 71
|
| 1229 |
-
- type: precision_at_10
|
| 1230 |
-
value: 34.4
|
| 1231 |
-
- type: precision_at_100
|
| 1232 |
-
value: 11.063
|
| 1233 |
-
- type: precision_at_1000
|
| 1234 |
-
value: 1.989
|
| 1235 |
-
- type: precision_at_3
|
| 1236 |
-
value: 52.333
|
| 1237 |
-
- type: precision_at_5
|
| 1238 |
-
value: 43.7
|
| 1239 |
-
- type: recall_at_1
|
| 1240 |
-
value: 8.573
|
| 1241 |
-
- type: recall_at_10
|
| 1242 |
-
value: 25.615
|
| 1243 |
-
- type: recall_at_100
|
| 1244 |
-
value: 53.385000000000005
|
| 1245 |
-
- type: recall_at_1000
|
| 1246 |
-
value: 75.46000000000001
|
| 1247 |
-
- type: recall_at_3
|
| 1248 |
-
value: 15.429
|
| 1249 |
-
- type: recall_at_5
|
| 1250 |
-
value: 19.357
|
| 1251 |
-
- task:
|
| 1252 |
-
type: Classification
|
| 1253 |
-
dataset:
|
| 1254 |
-
type: mteb/emotion
|
| 1255 |
-
name: MTEB EmotionClassification
|
| 1256 |
-
config: default
|
| 1257 |
-
split: test
|
| 1258 |
-
revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37
|
| 1259 |
-
metrics:
|
| 1260 |
-
- type: accuracy
|
| 1261 |
-
value: 47.989999999999995
|
| 1262 |
-
- type: f1
|
| 1263 |
-
value: 42.776314451497555
|
| 1264 |
-
- task:
|
| 1265 |
-
type: Retrieval
|
| 1266 |
-
dataset:
|
| 1267 |
-
type: fever
|
| 1268 |
-
name: MTEB FEVER
|
| 1269 |
-
config: default
|
| 1270 |
-
split: test
|
| 1271 |
-
revision: None
|
| 1272 |
-
metrics:
|
| 1273 |
-
- type: map_at_1
|
| 1274 |
-
value: 74.13499999999999
|
| 1275 |
-
- type: map_at_10
|
| 1276 |
-
value: 82.825
|
| 1277 |
-
- type: map_at_100
|
| 1278 |
-
value: 83.096
|
| 1279 |
-
- type: map_at_1000
|
| 1280 |
-
value: 83.111
|
| 1281 |
-
- type: map_at_3
|
| 1282 |
-
value: 81.748
|
| 1283 |
-
- type: map_at_5
|
| 1284 |
-
value: 82.446
|
| 1285 |
-
- type: mrr_at_1
|
| 1286 |
-
value: 79.553
|
| 1287 |
-
- type: mrr_at_10
|
| 1288 |
-
value: 86.654
|
| 1289 |
-
- type: mrr_at_100
|
| 1290 |
-
value: 86.774
|
| 1291 |
-
- type: mrr_at_1000
|
| 1292 |
-
value: 86.778
|
| 1293 |
-
- type: mrr_at_3
|
| 1294 |
-
value: 85.981
|
| 1295 |
-
- type: mrr_at_5
|
| 1296 |
-
value: 86.462
|
| 1297 |
-
- type: ndcg_at_1
|
| 1298 |
-
value: 79.553
|
| 1299 |
-
- type: ndcg_at_10
|
| 1300 |
-
value: 86.345
|
| 1301 |
-
- type: ndcg_at_100
|
| 1302 |
-
value: 87.32
|
| 1303 |
-
- type: ndcg_at_1000
|
| 1304 |
-
value: 87.58200000000001
|
| 1305 |
-
- type: ndcg_at_3
|
| 1306 |
-
value: 84.719
|
| 1307 |
-
- type: ndcg_at_5
|
| 1308 |
-
value: 85.677
|
| 1309 |
-
- type: precision_at_1
|
| 1310 |
-
value: 79.553
|
| 1311 |
-
- type: precision_at_10
|
| 1312 |
-
value: 10.402000000000001
|
| 1313 |
-
- type: precision_at_100
|
| 1314 |
-
value: 1.1119999999999999
|
| 1315 |
-
- type: precision_at_1000
|
| 1316 |
-
value: 0.11499999999999999
|
| 1317 |
-
- type: precision_at_3
|
| 1318 |
-
value: 32.413
|
| 1319 |
-
- type: precision_at_5
|
| 1320 |
-
value: 20.138
|
| 1321 |
-
- type: recall_at_1
|
| 1322 |
-
value: 74.13499999999999
|
| 1323 |
-
- type: recall_at_10
|
| 1324 |
-
value: 93.215
|
| 1325 |
-
- type: recall_at_100
|
| 1326 |
-
value: 97.083
|
| 1327 |
-
- type: recall_at_1000
|
| 1328 |
-
value: 98.732
|
| 1329 |
-
- type: recall_at_3
|
| 1330 |
-
value: 88.79
|
| 1331 |
-
- type: recall_at_5
|
| 1332 |
-
value: 91.259
|
| 1333 |
-
- task:
|
| 1334 |
-
type: Retrieval
|
| 1335 |
-
dataset:
|
| 1336 |
-
type: fiqa
|
| 1337 |
-
name: MTEB FiQA2018
|
| 1338 |
-
config: default
|
| 1339 |
-
split: test
|
| 1340 |
-
revision: None
|
| 1341 |
-
metrics:
|
| 1342 |
-
- type: map_at_1
|
| 1343 |
-
value: 18.298000000000002
|
| 1344 |
-
- type: map_at_10
|
| 1345 |
-
value: 29.901
|
| 1346 |
-
- type: map_at_100
|
| 1347 |
-
value: 31.528
|
| 1348 |
-
- type: map_at_1000
|
| 1349 |
-
value: 31.713
|
| 1350 |
-
- type: map_at_3
|
| 1351 |
-
value: 25.740000000000002
|
| 1352 |
-
- type: map_at_5
|
| 1353 |
-
value: 28.227999999999998
|
| 1354 |
-
- type: mrr_at_1
|
| 1355 |
-
value: 36.728
|
| 1356 |
-
- type: mrr_at_10
|
| 1357 |
-
value: 45.401
|
| 1358 |
-
- type: mrr_at_100
|
| 1359 |
-
value: 46.27
|
| 1360 |
-
- type: mrr_at_1000
|
| 1361 |
-
value: 46.315
|
| 1362 |
-
- type: mrr_at_3
|
| 1363 |
-
value: 42.978
|
| 1364 |
-
- type: mrr_at_5
|
| 1365 |
-
value: 44.29
|
| 1366 |
-
- type: ndcg_at_1
|
| 1367 |
-
value: 36.728
|
| 1368 |
-
- type: ndcg_at_10
|
| 1369 |
-
value: 37.456
|
| 1370 |
-
- type: ndcg_at_100
|
| 1371 |
-
value: 43.832
|
| 1372 |
-
- type: ndcg_at_1000
|
| 1373 |
-
value: 47
|
| 1374 |
-
- type: ndcg_at_3
|
| 1375 |
-
value: 33.694
|
| 1376 |
-
- type: ndcg_at_5
|
| 1377 |
-
value: 35.085
|
| 1378 |
-
- type: precision_at_1
|
| 1379 |
-
value: 36.728
|
| 1380 |
-
- type: precision_at_10
|
| 1381 |
-
value: 10.386
|
| 1382 |
-
- type: precision_at_100
|
| 1383 |
-
value: 1.701
|
| 1384 |
-
- type: precision_at_1000
|
| 1385 |
-
value: 0.22599999999999998
|
| 1386 |
-
- type: precision_at_3
|
| 1387 |
-
value: 22.479
|
| 1388 |
-
- type: precision_at_5
|
| 1389 |
-
value: 16.605
|
| 1390 |
-
- type: recall_at_1
|
| 1391 |
-
value: 18.298000000000002
|
| 1392 |
-
- type: recall_at_10
|
| 1393 |
-
value: 44.369
|
| 1394 |
-
- type: recall_at_100
|
| 1395 |
-
value: 68.098
|
| 1396 |
-
- type: recall_at_1000
|
| 1397 |
-
value: 87.21900000000001
|
| 1398 |
-
- type: recall_at_3
|
| 1399 |
-
value: 30.215999999999998
|
| 1400 |
-
- type: recall_at_5
|
| 1401 |
-
value: 36.861
|
| 1402 |
-
- task:
|
| 1403 |
-
type: Retrieval
|
| 1404 |
-
dataset:
|
| 1405 |
-
type: hotpotqa
|
| 1406 |
-
name: MTEB HotpotQA
|
| 1407 |
-
config: default
|
| 1408 |
-
split: test
|
| 1409 |
-
revision: None
|
| 1410 |
-
metrics:
|
| 1411 |
-
- type: map_at_1
|
| 1412 |
-
value: 39.568
|
| 1413 |
-
- type: map_at_10
|
| 1414 |
-
value: 65.061
|
| 1415 |
-
- type: map_at_100
|
| 1416 |
-
value: 65.896
|
| 1417 |
-
- type: map_at_1000
|
| 1418 |
-
value: 65.95100000000001
|
| 1419 |
-
- type: map_at_3
|
| 1420 |
-
value: 61.831
|
| 1421 |
-
- type: map_at_5
|
| 1422 |
-
value: 63.849000000000004
|
| 1423 |
-
- type: mrr_at_1
|
| 1424 |
-
value: 79.136
|
| 1425 |
-
- type: mrr_at_10
|
| 1426 |
-
value: 84.58200000000001
|
| 1427 |
-
- type: mrr_at_100
|
| 1428 |
-
value: 84.765
|
| 1429 |
-
- type: mrr_at_1000
|
| 1430 |
-
value: 84.772
|
| 1431 |
-
- type: mrr_at_3
|
| 1432 |
-
value: 83.684
|
| 1433 |
-
- type: mrr_at_5
|
| 1434 |
-
value: 84.223
|
| 1435 |
-
- type: ndcg_at_1
|
| 1436 |
-
value: 79.136
|
| 1437 |
-
- type: ndcg_at_10
|
| 1438 |
-
value: 72.622
|
| 1439 |
-
- type: ndcg_at_100
|
| 1440 |
-
value: 75.539
|
| 1441 |
-
- type: ndcg_at_1000
|
| 1442 |
-
value: 76.613
|
| 1443 |
-
- type: ndcg_at_3
|
| 1444 |
-
value: 68.065
|
| 1445 |
-
- type: ndcg_at_5
|
| 1446 |
-
value: 70.58
|
| 1447 |
-
- type: precision_at_1
|
| 1448 |
-
value: 79.136
|
| 1449 |
-
- type: precision_at_10
|
| 1450 |
-
value: 15.215
|
| 1451 |
-
- type: precision_at_100
|
| 1452 |
-
value: 1.7500000000000002
|
| 1453 |
-
- type: precision_at_1000
|
| 1454 |
-
value: 0.189
|
| 1455 |
-
- type: precision_at_3
|
| 1456 |
-
value: 44.011
|
| 1457 |
-
- type: precision_at_5
|
| 1458 |
-
value: 28.388999999999996
|
| 1459 |
-
- type: recall_at_1
|
| 1460 |
-
value: 39.568
|
| 1461 |
-
- type: recall_at_10
|
| 1462 |
-
value: 76.077
|
| 1463 |
-
- type: recall_at_100
|
| 1464 |
-
value: 87.481
|
| 1465 |
-
- type: recall_at_1000
|
| 1466 |
-
value: 94.56400000000001
|
| 1467 |
-
- type: recall_at_3
|
| 1468 |
-
value: 66.01599999999999
|
| 1469 |
-
- type: recall_at_5
|
| 1470 |
-
value: 70.97200000000001
|
| 1471 |
-
- task:
|
| 1472 |
-
type: Classification
|
| 1473 |
-
dataset:
|
| 1474 |
-
type: mteb/imdb
|
| 1475 |
-
name: MTEB ImdbClassification
|
| 1476 |
-
config: default
|
| 1477 |
-
split: test
|
| 1478 |
-
revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7
|
| 1479 |
-
metrics:
|
| 1480 |
-
- type: accuracy
|
| 1481 |
-
value: 85.312
|
| 1482 |
-
- type: ap
|
| 1483 |
-
value: 80.36296867333715
|
| 1484 |
-
- type: f1
|
| 1485 |
-
value: 85.26613311552218
|
| 1486 |
-
- task:
|
| 1487 |
-
type: Retrieval
|
| 1488 |
-
dataset:
|
| 1489 |
-
type: msmarco
|
| 1490 |
-
name: MTEB MSMARCO
|
| 1491 |
-
config: default
|
| 1492 |
-
split: dev
|
| 1493 |
-
revision: None
|
| 1494 |
-
metrics:
|
| 1495 |
-
- type: map_at_1
|
| 1496 |
-
value: 23.363999999999997
|
| 1497 |
-
- type: map_at_10
|
| 1498 |
-
value: 35.711999999999996
|
| 1499 |
-
- type: map_at_100
|
| 1500 |
-
value: 36.876999999999995
|
| 1501 |
-
- type: map_at_1000
|
| 1502 |
-
value: 36.923
|
| 1503 |
-
- type: map_at_3
|
| 1504 |
-
value: 32.034
|
| 1505 |
-
- type: map_at_5
|
| 1506 |
-
value: 34.159
|
| 1507 |
-
- type: mrr_at_1
|
| 1508 |
-
value: 24.04
|
| 1509 |
-
- type: mrr_at_10
|
| 1510 |
-
value: 36.345
|
| 1511 |
-
- type: mrr_at_100
|
| 1512 |
-
value: 37.441
|
| 1513 |
-
- type: mrr_at_1000
|
| 1514 |
-
value: 37.480000000000004
|
| 1515 |
-
- type: mrr_at_3
|
| 1516 |
-
value: 32.713
|
| 1517 |
-
- type: mrr_at_5
|
| 1518 |
-
value: 34.824
|
| 1519 |
-
- type: ndcg_at_1
|
| 1520 |
-
value: 24.026
|
| 1521 |
-
- type: ndcg_at_10
|
| 1522 |
-
value: 42.531
|
| 1523 |
-
- type: ndcg_at_100
|
| 1524 |
-
value: 48.081
|
| 1525 |
-
- type: ndcg_at_1000
|
| 1526 |
-
value: 49.213
|
| 1527 |
-
- type: ndcg_at_3
|
| 1528 |
-
value: 35.044
|
| 1529 |
-
- type: ndcg_at_5
|
| 1530 |
-
value: 38.834
|
| 1531 |
-
- type: precision_at_1
|
| 1532 |
-
value: 24.026
|
| 1533 |
-
- type: precision_at_10
|
| 1534 |
-
value: 6.622999999999999
|
| 1535 |
-
- type: precision_at_100
|
| 1536 |
-
value: 0.941
|
| 1537 |
-
- type: precision_at_1000
|
| 1538 |
-
value: 0.104
|
| 1539 |
-
- type: precision_at_3
|
| 1540 |
-
value: 14.909
|
| 1541 |
-
- type: precision_at_5
|
| 1542 |
-
value: 10.871
|
| 1543 |
-
- type: recall_at_1
|
| 1544 |
-
value: 23.363999999999997
|
| 1545 |
-
- type: recall_at_10
|
| 1546 |
-
value: 63.426
|
| 1547 |
-
- type: recall_at_100
|
| 1548 |
-
value: 88.96300000000001
|
| 1549 |
-
- type: recall_at_1000
|
| 1550 |
-
value: 97.637
|
| 1551 |
-
- type: recall_at_3
|
| 1552 |
-
value: 43.095
|
| 1553 |
-
- type: recall_at_5
|
| 1554 |
-
value: 52.178000000000004
|
| 1555 |
-
- task:
|
| 1556 |
-
type: Classification
|
| 1557 |
-
dataset:
|
| 1558 |
-
type: mteb/mtop_domain
|
| 1559 |
-
name: MTEB MTOPDomainClassification (en)
|
| 1560 |
-
config: en
|
| 1561 |
-
split: test
|
| 1562 |
-
revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
|
| 1563 |
-
metrics:
|
| 1564 |
-
- type: accuracy
|
| 1565 |
-
value: 93.0095759233926
|
| 1566 |
-
- type: f1
|
| 1567 |
-
value: 92.78387794667408
|
| 1568 |
-
- task:
|
| 1569 |
-
type: Classification
|
| 1570 |
-
dataset:
|
| 1571 |
-
type: mteb/mtop_intent
|
| 1572 |
-
name: MTEB MTOPIntentClassification (en)
|
| 1573 |
-
config: en
|
| 1574 |
-
split: test
|
| 1575 |
-
revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
|
| 1576 |
-
metrics:
|
| 1577 |
-
- type: accuracy
|
| 1578 |
-
value: 75.0296397628819
|
| 1579 |
-
- type: f1
|
| 1580 |
-
value: 58.45699589820874
|
| 1581 |
-
- task:
|
| 1582 |
-
type: Classification
|
| 1583 |
-
dataset:
|
| 1584 |
-
type: mteb/amazon_massive_intent
|
| 1585 |
-
name: MTEB MassiveIntentClassification (en)
|
| 1586 |
-
config: en
|
| 1587 |
-
split: test
|
| 1588 |
-
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
|
| 1589 |
-
metrics:
|
| 1590 |
-
- type: accuracy
|
| 1591 |
-
value: 73.45662407531944
|
| 1592 |
-
- type: f1
|
| 1593 |
-
value: 71.42364781421813
|
| 1594 |
-
- task:
|
| 1595 |
-
type: Classification
|
| 1596 |
-
dataset:
|
| 1597 |
-
type: mteb/amazon_massive_scenario
|
| 1598 |
-
name: MTEB MassiveScenarioClassification (en)
|
| 1599 |
-
config: en
|
| 1600 |
-
split: test
|
| 1601 |
-
revision: 7d571f92784cd94a019292a1f45445077d0ef634
|
| 1602 |
-
metrics:
|
| 1603 |
-
- type: accuracy
|
| 1604 |
-
value: 77.07800941492937
|
| 1605 |
-
- type: f1
|
| 1606 |
-
value: 77.22799045640845
|
| 1607 |
-
- task:
|
| 1608 |
-
type: Clustering
|
| 1609 |
-
dataset:
|
| 1610 |
-
type: mteb/medrxiv-clustering-p2p
|
| 1611 |
-
name: MTEB MedrxivClusteringP2P
|
| 1612 |
-
config: default
|
| 1613 |
-
split: test
|
| 1614 |
-
revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73
|
| 1615 |
-
metrics:
|
| 1616 |
-
- type: v_measure
|
| 1617 |
-
value: 34.531234379250606
|
| 1618 |
-
- task:
|
| 1619 |
-
type: Clustering
|
| 1620 |
-
dataset:
|
| 1621 |
-
type: mteb/medrxiv-clustering-s2s
|
| 1622 |
-
name: MTEB MedrxivClusteringS2S
|
| 1623 |
-
config: default
|
| 1624 |
-
split: test
|
| 1625 |
-
revision: 35191c8c0dca72d8ff3efcd72aa802307d469663
|
| 1626 |
-
metrics:
|
| 1627 |
-
- type: v_measure
|
| 1628 |
-
value: 30.941490381193802
|
| 1629 |
-
- task:
|
| 1630 |
-
type: Reranking
|
| 1631 |
-
dataset:
|
| 1632 |
-
type: mteb/mind_small
|
| 1633 |
-
name: MTEB MindSmallReranking
|
| 1634 |
-
config: default
|
| 1635 |
-
split: test
|
| 1636 |
-
revision: 3bdac13927fdc888b903db93b2ffdbd90b295a69
|
| 1637 |
-
metrics:
|
| 1638 |
-
- type: map
|
| 1639 |
-
value: 30.3115090856725
|
| 1640 |
-
- type: mrr
|
| 1641 |
-
value: 31.290667638675757
|
| 1642 |
-
- task:
|
| 1643 |
-
type: Retrieval
|
| 1644 |
-
dataset:
|
| 1645 |
-
type: nfcorpus
|
| 1646 |
-
name: MTEB NFCorpus
|
| 1647 |
-
config: default
|
| 1648 |
-
split: test
|
| 1649 |
-
revision: None
|
| 1650 |
-
metrics:
|
| 1651 |
-
- type: map_at_1
|
| 1652 |
-
value: 5.465
|
| 1653 |
-
- type: map_at_10
|
| 1654 |
-
value: 13.03
|
| 1655 |
-
- type: map_at_100
|
| 1656 |
-
value: 16.057
|
| 1657 |
-
- type: map_at_1000
|
| 1658 |
-
value: 17.49
|
| 1659 |
-
- type: map_at_3
|
| 1660 |
-
value: 9.553
|
| 1661 |
-
- type: map_at_5
|
| 1662 |
-
value: 11.204
|
| 1663 |
-
- type: mrr_at_1
|
| 1664 |
-
value: 43.653
|
| 1665 |
-
- type: mrr_at_10
|
| 1666 |
-
value: 53.269
|
| 1667 |
-
- type: mrr_at_100
|
| 1668 |
-
value: 53.72
|
| 1669 |
-
- type: mrr_at_1000
|
| 1670 |
-
value: 53.761
|
| 1671 |
-
- type: mrr_at_3
|
| 1672 |
-
value: 50.929
|
| 1673 |
-
- type: mrr_at_5
|
| 1674 |
-
value: 52.461
|
| 1675 |
-
- type: ndcg_at_1
|
| 1676 |
-
value: 42.26
|
| 1677 |
-
- type: ndcg_at_10
|
| 1678 |
-
value: 34.673
|
| 1679 |
-
- type: ndcg_at_100
|
| 1680 |
-
value: 30.759999999999998
|
| 1681 |
-
- type: ndcg_at_1000
|
| 1682 |
-
value: 39.728
|
| 1683 |
-
- type: ndcg_at_3
|
| 1684 |
-
value: 40.349000000000004
|
| 1685 |
-
- type: ndcg_at_5
|
| 1686 |
-
value: 37.915
|
| 1687 |
-
- type: precision_at_1
|
| 1688 |
-
value: 43.653
|
| 1689 |
-
- type: precision_at_10
|
| 1690 |
-
value: 25.789
|
| 1691 |
-
- type: precision_at_100
|
| 1692 |
-
value: 7.754999999999999
|
| 1693 |
-
- type: precision_at_1000
|
| 1694 |
-
value: 2.07
|
| 1695 |
-
- type: precision_at_3
|
| 1696 |
-
value: 38.596000000000004
|
| 1697 |
-
- type: precision_at_5
|
| 1698 |
-
value: 33.251
|
| 1699 |
-
- type: recall_at_1
|
| 1700 |
-
value: 5.465
|
| 1701 |
-
- type: recall_at_10
|
| 1702 |
-
value: 17.148
|
| 1703 |
-
- type: recall_at_100
|
| 1704 |
-
value: 29.768
|
| 1705 |
-
- type: recall_at_1000
|
| 1706 |
-
value: 62.239
|
| 1707 |
-
- type: recall_at_3
|
| 1708 |
-
value: 10.577
|
| 1709 |
-
- type: recall_at_5
|
| 1710 |
-
value: 13.315
|
| 1711 |
-
- task:
|
| 1712 |
-
type: Retrieval
|
| 1713 |
-
dataset:
|
| 1714 |
-
type: nq
|
| 1715 |
-
name: MTEB NQ
|
| 1716 |
-
config: default
|
| 1717 |
-
split: test
|
| 1718 |
-
revision: None
|
| 1719 |
-
metrics:
|
| 1720 |
-
- type: map_at_1
|
| 1721 |
-
value: 37.008
|
| 1722 |
-
- type: map_at_10
|
| 1723 |
-
value: 52.467
|
| 1724 |
-
- type: map_at_100
|
| 1725 |
-
value: 53.342999999999996
|
| 1726 |
-
- type: map_at_1000
|
| 1727 |
-
value: 53.366
|
| 1728 |
-
- type: map_at_3
|
| 1729 |
-
value: 48.412
|
| 1730 |
-
- type: map_at_5
|
| 1731 |
-
value: 50.875
|
| 1732 |
-
- type: mrr_at_1
|
| 1733 |
-
value: 41.541
|
| 1734 |
-
- type: mrr_at_10
|
| 1735 |
-
value: 54.967
|
| 1736 |
-
- type: mrr_at_100
|
| 1737 |
-
value: 55.611
|
| 1738 |
-
- type: mrr_at_1000
|
| 1739 |
-
value: 55.627
|
| 1740 |
-
- type: mrr_at_3
|
| 1741 |
-
value: 51.824999999999996
|
| 1742 |
-
- type: mrr_at_5
|
| 1743 |
-
value: 53.763000000000005
|
| 1744 |
-
- type: ndcg_at_1
|
| 1745 |
-
value: 41.541
|
| 1746 |
-
- type: ndcg_at_10
|
| 1747 |
-
value: 59.724999999999994
|
| 1748 |
-
- type: ndcg_at_100
|
| 1749 |
-
value: 63.38700000000001
|
| 1750 |
-
- type: ndcg_at_1000
|
| 1751 |
-
value: 63.883
|
| 1752 |
-
- type: ndcg_at_3
|
| 1753 |
-
value: 52.331
|
| 1754 |
-
- type: ndcg_at_5
|
| 1755 |
-
value: 56.327000000000005
|
| 1756 |
-
- type: precision_at_1
|
| 1757 |
-
value: 41.541
|
| 1758 |
-
- type: precision_at_10
|
| 1759 |
-
value: 9.447
|
| 1760 |
-
- type: precision_at_100
|
| 1761 |
-
value: 1.1520000000000001
|
| 1762 |
-
- type: precision_at_1000
|
| 1763 |
-
value: 0.12
|
| 1764 |
-
- type: precision_at_3
|
| 1765 |
-
value: 23.262
|
| 1766 |
-
- type: precision_at_5
|
| 1767 |
-
value: 16.314999999999998
|
| 1768 |
-
- type: recall_at_1
|
| 1769 |
-
value: 37.008
|
| 1770 |
-
- type: recall_at_10
|
| 1771 |
-
value: 79.145
|
| 1772 |
-
- type: recall_at_100
|
| 1773 |
-
value: 94.986
|
| 1774 |
-
- type: recall_at_1000
|
| 1775 |
-
value: 98.607
|
| 1776 |
-
- type: recall_at_3
|
| 1777 |
-
value: 60.277
|
| 1778 |
-
- type: recall_at_5
|
| 1779 |
-
value: 69.407
|
| 1780 |
-
- task:
|
| 1781 |
-
type: Retrieval
|
| 1782 |
-
dataset:
|
| 1783 |
-
type: quora
|
| 1784 |
-
name: MTEB QuoraRetrieval
|
| 1785 |
-
config: default
|
| 1786 |
-
split: test
|
| 1787 |
-
revision: None
|
| 1788 |
-
metrics:
|
| 1789 |
-
- type: map_at_1
|
| 1790 |
-
value: 70.402
|
| 1791 |
-
- type: map_at_10
|
| 1792 |
-
value: 84.181
|
| 1793 |
-
- type: map_at_100
|
| 1794 |
-
value: 84.796
|
| 1795 |
-
- type: map_at_1000
|
| 1796 |
-
value: 84.81400000000001
|
| 1797 |
-
- type: map_at_3
|
| 1798 |
-
value: 81.209
|
| 1799 |
-
- type: map_at_5
|
| 1800 |
-
value: 83.085
|
| 1801 |
-
- type: mrr_at_1
|
| 1802 |
-
value: 81.02000000000001
|
| 1803 |
-
- type: mrr_at_10
|
| 1804 |
-
value: 87.263
|
| 1805 |
-
- type: mrr_at_100
|
| 1806 |
-
value: 87.36
|
| 1807 |
-
- type: mrr_at_1000
|
| 1808 |
-
value: 87.36
|
| 1809 |
-
- type: mrr_at_3
|
| 1810 |
-
value: 86.235
|
| 1811 |
-
- type: mrr_at_5
|
| 1812 |
-
value: 86.945
|
| 1813 |
-
- type: ndcg_at_1
|
| 1814 |
-
value: 81.01
|
| 1815 |
-
- type: ndcg_at_10
|
| 1816 |
-
value: 87.99900000000001
|
| 1817 |
-
- type: ndcg_at_100
|
| 1818 |
-
value: 89.217
|
| 1819 |
-
- type: ndcg_at_1000
|
| 1820 |
-
value: 89.33
|
| 1821 |
-
- type: ndcg_at_3
|
| 1822 |
-
value: 85.053
|
| 1823 |
-
- type: ndcg_at_5
|
| 1824 |
-
value: 86.703
|
| 1825 |
-
- type: precision_at_1
|
| 1826 |
-
value: 81.01
|
| 1827 |
-
- type: precision_at_10
|
| 1828 |
-
value: 13.336
|
| 1829 |
-
- type: precision_at_100
|
| 1830 |
-
value: 1.52
|
| 1831 |
-
- type: precision_at_1000
|
| 1832 |
-
value: 0.156
|
| 1833 |
-
- type: precision_at_3
|
| 1834 |
-
value: 37.14
|
| 1835 |
-
- type: precision_at_5
|
| 1836 |
-
value: 24.44
|
| 1837 |
-
- type: recall_at_1
|
| 1838 |
-
value: 70.402
|
| 1839 |
-
- type: recall_at_10
|
| 1840 |
-
value: 95.214
|
| 1841 |
-
- type: recall_at_100
|
| 1842 |
-
value: 99.438
|
| 1843 |
-
- type: recall_at_1000
|
| 1844 |
-
value: 99.928
|
| 1845 |
-
- type: recall_at_3
|
| 1846 |
-
value: 86.75699999999999
|
| 1847 |
-
- type: recall_at_5
|
| 1848 |
-
value: 91.44099999999999
|
| 1849 |
-
- task:
|
| 1850 |
-
type: Clustering
|
| 1851 |
-
dataset:
|
| 1852 |
-
type: mteb/reddit-clustering
|
| 1853 |
-
name: MTEB RedditClustering
|
| 1854 |
-
config: default
|
| 1855 |
-
split: test
|
| 1856 |
-
revision: 24640382cdbf8abc73003fb0fa6d111a705499eb
|
| 1857 |
-
metrics:
|
| 1858 |
-
- type: v_measure
|
| 1859 |
-
value: 56.51721502758904
|
| 1860 |
-
- task:
|
| 1861 |
-
type: Clustering
|
| 1862 |
-
dataset:
|
| 1863 |
-
type: mteb/reddit-clustering-p2p
|
| 1864 |
-
name: MTEB RedditClusteringP2P
|
| 1865 |
-
config: default
|
| 1866 |
-
split: test
|
| 1867 |
-
revision: 282350215ef01743dc01b456c7f5241fa8937f16
|
| 1868 |
-
metrics:
|
| 1869 |
-
- type: v_measure
|
| 1870 |
-
value: 61.054808572333016
|
| 1871 |
-
- task:
|
| 1872 |
-
type: Retrieval
|
| 1873 |
-
dataset:
|
| 1874 |
-
type: scidocs
|
| 1875 |
-
name: MTEB SCIDOCS
|
| 1876 |
-
config: default
|
| 1877 |
-
split: test
|
| 1878 |
-
revision: None
|
| 1879 |
-
metrics:
|
| 1880 |
-
- type: map_at_1
|
| 1881 |
-
value: 4.578
|
| 1882 |
-
- type: map_at_10
|
| 1883 |
-
value: 11.036999999999999
|
| 1884 |
-
- type: map_at_100
|
| 1885 |
-
value: 12.879999999999999
|
| 1886 |
-
- type: map_at_1000
|
| 1887 |
-
value: 13.150999999999998
|
| 1888 |
-
- type: map_at_3
|
| 1889 |
-
value: 8.133
|
| 1890 |
-
- type: map_at_5
|
| 1891 |
-
value: 9.559
|
| 1892 |
-
- type: mrr_at_1
|
| 1893 |
-
value: 22.6
|
| 1894 |
-
- type: mrr_at_10
|
| 1895 |
-
value: 32.68
|
| 1896 |
-
- type: mrr_at_100
|
| 1897 |
-
value: 33.789
|
| 1898 |
-
- type: mrr_at_1000
|
| 1899 |
-
value: 33.854
|
| 1900 |
-
- type: mrr_at_3
|
| 1901 |
-
value: 29.7
|
| 1902 |
-
- type: mrr_at_5
|
| 1903 |
-
value: 31.480000000000004
|
| 1904 |
-
- type: ndcg_at_1
|
| 1905 |
-
value: 22.6
|
| 1906 |
-
- type: ndcg_at_10
|
| 1907 |
-
value: 18.616
|
| 1908 |
-
- type: ndcg_at_100
|
| 1909 |
-
value: 25.883
|
| 1910 |
-
- type: ndcg_at_1000
|
| 1911 |
-
value: 30.944
|
| 1912 |
-
- type: ndcg_at_3
|
| 1913 |
-
value: 18.136
|
| 1914 |
-
- type: ndcg_at_5
|
| 1915 |
-
value: 15.625
|
| 1916 |
-
- type: precision_at_1
|
| 1917 |
-
value: 22.6
|
| 1918 |
-
- type: precision_at_10
|
| 1919 |
-
value: 9.48
|
| 1920 |
-
- type: precision_at_100
|
| 1921 |
-
value: 1.991
|
| 1922 |
-
- type: precision_at_1000
|
| 1923 |
-
value: 0.321
|
| 1924 |
-
- type: precision_at_3
|
| 1925 |
-
value: 16.8
|
| 1926 |
-
- type: precision_at_5
|
| 1927 |
-
value: 13.54
|
| 1928 |
-
- type: recall_at_1
|
| 1929 |
-
value: 4.578
|
| 1930 |
-
- type: recall_at_10
|
| 1931 |
-
value: 19.213
|
| 1932 |
-
- type: recall_at_100
|
| 1933 |
-
value: 40.397
|
| 1934 |
-
- type: recall_at_1000
|
| 1935 |
-
value: 65.2
|
| 1936 |
-
- type: recall_at_3
|
| 1937 |
-
value: 10.208
|
| 1938 |
-
- type: recall_at_5
|
| 1939 |
-
value: 13.718
|
| 1940 |
-
- task:
|
| 1941 |
-
type: STS
|
| 1942 |
-
dataset:
|
| 1943 |
-
type: mteb/sickr-sts
|
| 1944 |
-
name: MTEB SICK-R
|
| 1945 |
-
config: default
|
| 1946 |
-
split: test
|
| 1947 |
-
revision: a6ea5a8cab320b040a23452cc28066d9beae2cee
|
| 1948 |
-
metrics:
|
| 1949 |
-
- type: cos_sim_pearson
|
| 1950 |
-
value: 83.44288351714071
|
| 1951 |
-
- type: cos_sim_spearman
|
| 1952 |
-
value: 79.37995604564952
|
| 1953 |
-
- type: euclidean_pearson
|
| 1954 |
-
value: 81.1078874670718
|
| 1955 |
-
- type: euclidean_spearman
|
| 1956 |
-
value: 79.37995905980499
|
| 1957 |
-
- type: manhattan_pearson
|
| 1958 |
-
value: 81.03697527288986
|
| 1959 |
-
- type: manhattan_spearman
|
| 1960 |
-
value: 79.33490235296236
|
| 1961 |
-
- task:
|
| 1962 |
-
type: STS
|
| 1963 |
-
dataset:
|
| 1964 |
-
type: mteb/sts12-sts
|
| 1965 |
-
name: MTEB STS12
|
| 1966 |
-
config: default
|
| 1967 |
-
split: test
|
| 1968 |
-
revision: a0d554a64d88156834ff5ae9920b964011b16384
|
| 1969 |
-
metrics:
|
| 1970 |
-
- type: cos_sim_pearson
|
| 1971 |
-
value: 84.95557650436523
|
| 1972 |
-
- type: cos_sim_spearman
|
| 1973 |
-
value: 78.5190672399868
|
| 1974 |
-
- type: euclidean_pearson
|
| 1975 |
-
value: 81.58064025904707
|
| 1976 |
-
- type: euclidean_spearman
|
| 1977 |
-
value: 78.5190672399868
|
| 1978 |
-
- type: manhattan_pearson
|
| 1979 |
-
value: 81.52857930619889
|
| 1980 |
-
- type: manhattan_spearman
|
| 1981 |
-
value: 78.50421361308034
|
| 1982 |
-
- task:
|
| 1983 |
-
type: STS
|
| 1984 |
-
dataset:
|
| 1985 |
-
type: mteb/sts13-sts
|
| 1986 |
-
name: MTEB STS13
|
| 1987 |
-
config: default
|
| 1988 |
-
split: test
|
| 1989 |
-
revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca
|
| 1990 |
-
metrics:
|
| 1991 |
-
- type: cos_sim_pearson
|
| 1992 |
-
value: 84.79128416228737
|
| 1993 |
-
- type: cos_sim_spearman
|
| 1994 |
-
value: 86.05402451477147
|
| 1995 |
-
- type: euclidean_pearson
|
| 1996 |
-
value: 85.46280267054289
|
| 1997 |
-
- type: euclidean_spearman
|
| 1998 |
-
value: 86.05402451477147
|
| 1999 |
-
- type: manhattan_pearson
|
| 2000 |
-
value: 85.46278563858236
|
| 2001 |
-
- type: manhattan_spearman
|
| 2002 |
-
value: 86.08079590861004
|
| 2003 |
-
- task:
|
| 2004 |
-
type: STS
|
| 2005 |
-
dataset:
|
| 2006 |
-
type: mteb/sts14-sts
|
| 2007 |
-
name: MTEB STS14
|
| 2008 |
-
config: default
|
| 2009 |
-
split: test
|
| 2010 |
-
revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375
|
| 2011 |
-
metrics:
|
| 2012 |
-
- type: cos_sim_pearson
|
| 2013 |
-
value: 83.20623089568763
|
| 2014 |
-
- type: cos_sim_spearman
|
| 2015 |
-
value: 81.53786907061009
|
| 2016 |
-
- type: euclidean_pearson
|
| 2017 |
-
value: 82.82272250091494
|
| 2018 |
-
- type: euclidean_spearman
|
| 2019 |
-
value: 81.53786907061009
|
| 2020 |
-
- type: manhattan_pearson
|
| 2021 |
-
value: 82.78850494027013
|
| 2022 |
-
- type: manhattan_spearman
|
| 2023 |
-
value: 81.5135618083407
|
| 2024 |
-
- task:
|
| 2025 |
-
type: STS
|
| 2026 |
-
dataset:
|
| 2027 |
-
type: mteb/sts15-sts
|
| 2028 |
-
name: MTEB STS15
|
| 2029 |
-
config: default
|
| 2030 |
-
split: test
|
| 2031 |
-
revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3
|
| 2032 |
-
metrics:
|
| 2033 |
-
- type: cos_sim_pearson
|
| 2034 |
-
value: 85.46366618397936
|
| 2035 |
-
- type: cos_sim_spearman
|
| 2036 |
-
value: 86.96566013336908
|
| 2037 |
-
- type: euclidean_pearson
|
| 2038 |
-
value: 86.62651697548931
|
| 2039 |
-
- type: euclidean_spearman
|
| 2040 |
-
value: 86.96565526364454
|
| 2041 |
-
- type: manhattan_pearson
|
| 2042 |
-
value: 86.58812160258009
|
| 2043 |
-
- type: manhattan_spearman
|
| 2044 |
-
value: 86.9336484321288
|
| 2045 |
-
- task:
|
| 2046 |
-
type: STS
|
| 2047 |
-
dataset:
|
| 2048 |
-
type: mteb/sts16-sts
|
| 2049 |
-
name: MTEB STS16
|
| 2050 |
-
config: default
|
| 2051 |
-
split: test
|
| 2052 |
-
revision: 4d8694f8f0e0100860b497b999b3dbed754a0513
|
| 2053 |
-
metrics:
|
| 2054 |
-
- type: cos_sim_pearson
|
| 2055 |
-
value: 82.51858358641559
|
| 2056 |
-
- type: cos_sim_spearman
|
| 2057 |
-
value: 84.7652527954999
|
| 2058 |
-
- type: euclidean_pearson
|
| 2059 |
-
value: 84.23914783766861
|
| 2060 |
-
- type: euclidean_spearman
|
| 2061 |
-
value: 84.7652527954999
|
| 2062 |
-
- type: manhattan_pearson
|
| 2063 |
-
value: 84.22749648503171
|
| 2064 |
-
- type: manhattan_spearman
|
| 2065 |
-
value: 84.74527996746386
|
| 2066 |
-
- task:
|
| 2067 |
-
type: STS
|
| 2068 |
-
dataset:
|
| 2069 |
-
type: mteb/sts17-crosslingual-sts
|
| 2070 |
-
name: MTEB STS17 (en-en)
|
| 2071 |
-
config: en-en
|
| 2072 |
-
split: test
|
| 2073 |
-
revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
|
| 2074 |
-
metrics:
|
| 2075 |
-
- type: cos_sim_pearson
|
| 2076 |
-
value: 87.28026563313065
|
| 2077 |
-
- type: cos_sim_spearman
|
| 2078 |
-
value: 87.46928143824915
|
| 2079 |
-
- type: euclidean_pearson
|
| 2080 |
-
value: 88.30558762000372
|
| 2081 |
-
- type: euclidean_spearman
|
| 2082 |
-
value: 87.46928143824915
|
| 2083 |
-
- type: manhattan_pearson
|
| 2084 |
-
value: 88.10513330809331
|
| 2085 |
-
- type: manhattan_spearman
|
| 2086 |
-
value: 87.21069787834173
|
| 2087 |
-
- task:
|
| 2088 |
-
type: STS
|
| 2089 |
-
dataset:
|
| 2090 |
-
type: mteb/sts22-crosslingual-sts
|
| 2091 |
-
name: MTEB STS22 (en)
|
| 2092 |
-
config: en
|
| 2093 |
-
split: test
|
| 2094 |
-
revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
|
| 2095 |
-
metrics:
|
| 2096 |
-
- type: cos_sim_pearson
|
| 2097 |
-
value: 62.376497134587375
|
| 2098 |
-
- type: cos_sim_spearman
|
| 2099 |
-
value: 65.0159550112516
|
| 2100 |
-
- type: euclidean_pearson
|
| 2101 |
-
value: 65.64572120879598
|
| 2102 |
-
- type: euclidean_spearman
|
| 2103 |
-
value: 65.0159550112516
|
| 2104 |
-
- type: manhattan_pearson
|
| 2105 |
-
value: 65.88143604989976
|
| 2106 |
-
- type: manhattan_spearman
|
| 2107 |
-
value: 65.17547297222434
|
| 2108 |
-
- task:
|
| 2109 |
-
type: STS
|
| 2110 |
-
dataset:
|
| 2111 |
-
type: mteb/stsbenchmark-sts
|
| 2112 |
-
name: MTEB STSBenchmark
|
| 2113 |
-
config: default
|
| 2114 |
-
split: test
|
| 2115 |
-
revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831
|
| 2116 |
-
metrics:
|
| 2117 |
-
- type: cos_sim_pearson
|
| 2118 |
-
value: 84.22876368947644
|
| 2119 |
-
- type: cos_sim_spearman
|
| 2120 |
-
value: 85.46935577445318
|
| 2121 |
-
- type: euclidean_pearson
|
| 2122 |
-
value: 85.32830231392005
|
| 2123 |
-
- type: euclidean_spearman
|
| 2124 |
-
value: 85.46935577445318
|
| 2125 |
-
- type: manhattan_pearson
|
| 2126 |
-
value: 85.30353211758495
|
| 2127 |
-
- type: manhattan_spearman
|
| 2128 |
-
value: 85.42821085956945
|
| 2129 |
-
- task:
|
| 2130 |
-
type: Reranking
|
| 2131 |
-
dataset:
|
| 2132 |
-
type: mteb/scidocs-reranking
|
| 2133 |
-
name: MTEB SciDocsRR
|
| 2134 |
-
config: default
|
| 2135 |
-
split: test
|
| 2136 |
-
revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab
|
| 2137 |
-
metrics:
|
| 2138 |
-
- type: map
|
| 2139 |
-
value: 80.60986667767133
|
| 2140 |
-
- type: mrr
|
| 2141 |
-
value: 94.29432314236236
|
| 2142 |
-
- task:
|
| 2143 |
-
type: Retrieval
|
| 2144 |
-
dataset:
|
| 2145 |
-
type: scifact
|
| 2146 |
-
name: MTEB SciFact
|
| 2147 |
-
config: default
|
| 2148 |
-
split: test
|
| 2149 |
-
revision: None
|
| 2150 |
-
metrics:
|
| 2151 |
-
- type: map_at_1
|
| 2152 |
-
value: 54.528
|
| 2153 |
-
- type: map_at_10
|
| 2154 |
-
value: 65.187
|
| 2155 |
-
- type: map_at_100
|
| 2156 |
-
value: 65.62599999999999
|
| 2157 |
-
- type: map_at_1000
|
| 2158 |
-
value: 65.657
|
| 2159 |
-
- type: map_at_3
|
| 2160 |
-
value: 62.352
|
| 2161 |
-
- type: map_at_5
|
| 2162 |
-
value: 64.025
|
| 2163 |
-
- type: mrr_at_1
|
| 2164 |
-
value: 57.333
|
| 2165 |
-
- type: mrr_at_10
|
| 2166 |
-
value: 66.577
|
| 2167 |
-
- type: mrr_at_100
|
| 2168 |
-
value: 66.88
|
| 2169 |
-
- type: mrr_at_1000
|
| 2170 |
-
value: 66.908
|
| 2171 |
-
- type: mrr_at_3
|
| 2172 |
-
value: 64.556
|
| 2173 |
-
- type: mrr_at_5
|
| 2174 |
-
value: 65.739
|
| 2175 |
-
- type: ndcg_at_1
|
| 2176 |
-
value: 57.333
|
| 2177 |
-
- type: ndcg_at_10
|
| 2178 |
-
value: 70.275
|
| 2179 |
-
- type: ndcg_at_100
|
| 2180 |
-
value: 72.136
|
| 2181 |
-
- type: ndcg_at_1000
|
| 2182 |
-
value: 72.963
|
| 2183 |
-
- type: ndcg_at_3
|
| 2184 |
-
value: 65.414
|
| 2185 |
-
- type: ndcg_at_5
|
| 2186 |
-
value: 67.831
|
| 2187 |
-
- type: precision_at_1
|
| 2188 |
-
value: 57.333
|
| 2189 |
-
- type: precision_at_10
|
| 2190 |
-
value: 9.5
|
| 2191 |
-
- type: precision_at_100
|
| 2192 |
-
value: 1.057
|
| 2193 |
-
- type: precision_at_1000
|
| 2194 |
-
value: 0.11199999999999999
|
| 2195 |
-
- type: precision_at_3
|
| 2196 |
-
value: 25.778000000000002
|
| 2197 |
-
- type: precision_at_5
|
| 2198 |
-
value: 17.2
|
| 2199 |
-
- type: recall_at_1
|
| 2200 |
-
value: 54.528
|
| 2201 |
-
- type: recall_at_10
|
| 2202 |
-
value: 84.356
|
| 2203 |
-
- type: recall_at_100
|
| 2204 |
-
value: 92.833
|
| 2205 |
-
- type: recall_at_1000
|
| 2206 |
-
value: 99.333
|
| 2207 |
-
- type: recall_at_3
|
| 2208 |
-
value: 71.283
|
| 2209 |
-
- type: recall_at_5
|
| 2210 |
-
value: 77.14999999999999
|
| 2211 |
-
- task:
|
| 2212 |
-
type: PairClassification
|
| 2213 |
-
dataset:
|
| 2214 |
-
type: mteb/sprintduplicatequestions-pairclassification
|
| 2215 |
-
name: MTEB SprintDuplicateQuestions
|
| 2216 |
-
config: default
|
| 2217 |
-
split: test
|
| 2218 |
-
revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46
|
| 2219 |
-
metrics:
|
| 2220 |
-
- type: cos_sim_accuracy
|
| 2221 |
-
value: 99.74158415841585
|
| 2222 |
-
- type: cos_sim_ap
|
| 2223 |
-
value: 92.90048959850317
|
| 2224 |
-
- type: cos_sim_f1
|
| 2225 |
-
value: 86.35650810245687
|
| 2226 |
-
- type: cos_sim_precision
|
| 2227 |
-
value: 90.4709748083242
|
| 2228 |
-
- type: cos_sim_recall
|
| 2229 |
-
value: 82.6
|
| 2230 |
-
- type: dot_accuracy
|
| 2231 |
-
value: 99.74158415841585
|
| 2232 |
-
- type: dot_ap
|
| 2233 |
-
value: 92.90048959850317
|
| 2234 |
-
- type: dot_f1
|
| 2235 |
-
value: 86.35650810245687
|
| 2236 |
-
- type: dot_precision
|
| 2237 |
-
value: 90.4709748083242
|
| 2238 |
-
- type: dot_recall
|
| 2239 |
-
value: 82.6
|
| 2240 |
-
- type: euclidean_accuracy
|
| 2241 |
-
value: 99.74158415841585
|
| 2242 |
-
- type: euclidean_ap
|
| 2243 |
-
value: 92.90048959850317
|
| 2244 |
-
- type: euclidean_f1
|
| 2245 |
-
value: 86.35650810245687
|
| 2246 |
-
- type: euclidean_precision
|
| 2247 |
-
value: 90.4709748083242
|
| 2248 |
-
- type: euclidean_recall
|
| 2249 |
-
value: 82.6
|
| 2250 |
-
- type: manhattan_accuracy
|
| 2251 |
-
value: 99.74158415841585
|
| 2252 |
-
- type: manhattan_ap
|
| 2253 |
-
value: 92.87344692947894
|
| 2254 |
-
- type: manhattan_f1
|
| 2255 |
-
value: 86.38497652582159
|
| 2256 |
-
- type: manhattan_precision
|
| 2257 |
-
value: 90.29443838604145
|
| 2258 |
-
- type: manhattan_recall
|
| 2259 |
-
value: 82.8
|
| 2260 |
-
- type: max_accuracy
|
| 2261 |
-
value: 99.74158415841585
|
| 2262 |
-
- type: max_ap
|
| 2263 |
-
value: 92.90048959850317
|
| 2264 |
-
- type: max_f1
|
| 2265 |
-
value: 86.38497652582159
|
| 2266 |
-
- task:
|
| 2267 |
-
type: Clustering
|
| 2268 |
-
dataset:
|
| 2269 |
-
type: mteb/stackexchange-clustering
|
| 2270 |
-
name: MTEB StackExchangeClustering
|
| 2271 |
-
config: default
|
| 2272 |
-
split: test
|
| 2273 |
-
revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259
|
| 2274 |
-
metrics:
|
| 2275 |
-
- type: v_measure
|
| 2276 |
-
value: 63.191648770424216
|
| 2277 |
-
- task:
|
| 2278 |
-
type: Clustering
|
| 2279 |
-
dataset:
|
| 2280 |
-
type: mteb/stackexchange-clustering-p2p
|
| 2281 |
-
name: MTEB StackExchangeClusteringP2P
|
| 2282 |
-
config: default
|
| 2283 |
-
split: test
|
| 2284 |
-
revision: 815ca46b2622cec33ccafc3735d572c266efdb44
|
| 2285 |
-
metrics:
|
| 2286 |
-
- type: v_measure
|
| 2287 |
-
value: 34.02944668730218
|
| 2288 |
-
- task:
|
| 2289 |
-
type: Reranking
|
| 2290 |
-
dataset:
|
| 2291 |
-
type: mteb/stackoverflowdupquestions-reranking
|
| 2292 |
-
name: MTEB StackOverflowDupQuestions
|
| 2293 |
-
config: default
|
| 2294 |
-
split: test
|
| 2295 |
-
revision: e185fbe320c72810689fc5848eb6114e1ef5ec69
|
| 2296 |
-
metrics:
|
| 2297 |
-
- type: map
|
| 2298 |
-
value: 50.466386167525265
|
| 2299 |
-
- type: mrr
|
| 2300 |
-
value: 51.19071492233257
|
| 2301 |
-
- task:
|
| 2302 |
-
type: Summarization
|
| 2303 |
-
dataset:
|
| 2304 |
-
type: mteb/summeval
|
| 2305 |
-
name: MTEB SummEval
|
| 2306 |
-
config: default
|
| 2307 |
-
split: test
|
| 2308 |
-
revision: cda12ad7615edc362dbf25a00fdd61d3b1eaf93c
|
| 2309 |
-
metrics:
|
| 2310 |
-
- type: cos_sim_pearson
|
| 2311 |
-
value: 30.198022505886435
|
| 2312 |
-
- type: cos_sim_spearman
|
| 2313 |
-
value: 30.40170257939193
|
| 2314 |
-
- type: dot_pearson
|
| 2315 |
-
value: 30.198015316402614
|
| 2316 |
-
- type: dot_spearman
|
| 2317 |
-
value: 30.40170257939193
|
| 2318 |
-
- task:
|
| 2319 |
-
type: Retrieval
|
| 2320 |
-
dataset:
|
| 2321 |
-
type: trec-covid
|
| 2322 |
-
name: MTEB TRECCOVID
|
| 2323 |
-
config: default
|
| 2324 |
-
split: test
|
| 2325 |
-
revision: None
|
| 2326 |
-
metrics:
|
| 2327 |
-
- type: map_at_1
|
| 2328 |
-
value: 0.242
|
| 2329 |
-
- type: map_at_10
|
| 2330 |
-
value: 2.17
|
| 2331 |
-
- type: map_at_100
|
| 2332 |
-
value: 12.221
|
| 2333 |
-
- type: map_at_1000
|
| 2334 |
-
value: 28.63
|
| 2335 |
-
- type: map_at_3
|
| 2336 |
-
value: 0.728
|
| 2337 |
-
- type: map_at_5
|
| 2338 |
-
value: 1.185
|
| 2339 |
-
- type: mrr_at_1
|
| 2340 |
-
value: 94
|
| 2341 |
-
- type: mrr_at_10
|
| 2342 |
-
value: 97
|
| 2343 |
-
- type: mrr_at_100
|
| 2344 |
-
value: 97
|
| 2345 |
-
- type: mrr_at_1000
|
| 2346 |
-
value: 97
|
| 2347 |
-
- type: mrr_at_3
|
| 2348 |
-
value: 97
|
| 2349 |
-
- type: mrr_at_5
|
| 2350 |
-
value: 97
|
| 2351 |
-
- type: ndcg_at_1
|
| 2352 |
-
value: 89
|
| 2353 |
-
- type: ndcg_at_10
|
| 2354 |
-
value: 82.30499999999999
|
| 2355 |
-
- type: ndcg_at_100
|
| 2356 |
-
value: 61.839999999999996
|
| 2357 |
-
- type: ndcg_at_1000
|
| 2358 |
-
value: 53.381
|
| 2359 |
-
- type: ndcg_at_3
|
| 2360 |
-
value: 88.877
|
| 2361 |
-
- type: ndcg_at_5
|
| 2362 |
-
value: 86.05199999999999
|
| 2363 |
-
- type: precision_at_1
|
| 2364 |
-
value: 94
|
| 2365 |
-
- type: precision_at_10
|
| 2366 |
-
value: 87
|
| 2367 |
-
- type: precision_at_100
|
| 2368 |
-
value: 63.38
|
| 2369 |
-
- type: precision_at_1000
|
| 2370 |
-
value: 23.498
|
| 2371 |
-
- type: precision_at_3
|
| 2372 |
-
value: 94
|
| 2373 |
-
- type: precision_at_5
|
| 2374 |
-
value: 92
|
| 2375 |
-
- type: recall_at_1
|
| 2376 |
-
value: 0.242
|
| 2377 |
-
- type: recall_at_10
|
| 2378 |
-
value: 2.302
|
| 2379 |
-
- type: recall_at_100
|
| 2380 |
-
value: 14.979000000000001
|
| 2381 |
-
- type: recall_at_1000
|
| 2382 |
-
value: 49.638
|
| 2383 |
-
- type: recall_at_3
|
| 2384 |
-
value: 0.753
|
| 2385 |
-
- type: recall_at_5
|
| 2386 |
-
value: 1.226
|
| 2387 |
-
- task:
|
| 2388 |
-
type: Retrieval
|
| 2389 |
-
dataset:
|
| 2390 |
-
type: webis-touche2020
|
| 2391 |
-
name: MTEB Touche2020
|
| 2392 |
-
config: default
|
| 2393 |
-
split: test
|
| 2394 |
-
revision: None
|
| 2395 |
-
metrics:
|
| 2396 |
-
- type: map_at_1
|
| 2397 |
-
value: 3.006
|
| 2398 |
-
- type: map_at_10
|
| 2399 |
-
value: 11.805
|
| 2400 |
-
- type: map_at_100
|
| 2401 |
-
value: 18.146
|
| 2402 |
-
- type: map_at_1000
|
| 2403 |
-
value: 19.788
|
| 2404 |
-
- type: map_at_3
|
| 2405 |
-
value: 5.914
|
| 2406 |
-
- type: map_at_5
|
| 2407 |
-
value: 8.801
|
| 2408 |
-
- type: mrr_at_1
|
| 2409 |
-
value: 40.816
|
| 2410 |
-
- type: mrr_at_10
|
| 2411 |
-
value: 56.36600000000001
|
| 2412 |
-
- type: mrr_at_100
|
| 2413 |
-
value: 56.721999999999994
|
| 2414 |
-
- type: mrr_at_1000
|
| 2415 |
-
value: 56.721999999999994
|
| 2416 |
-
- type: mrr_at_3
|
| 2417 |
-
value: 52.041000000000004
|
| 2418 |
-
- type: mrr_at_5
|
| 2419 |
-
value: 54.796
|
| 2420 |
-
- type: ndcg_at_1
|
| 2421 |
-
value: 37.755
|
| 2422 |
-
- type: ndcg_at_10
|
| 2423 |
-
value: 29.863
|
| 2424 |
-
- type: ndcg_at_100
|
| 2425 |
-
value: 39.571
|
| 2426 |
-
- type: ndcg_at_1000
|
| 2427 |
-
value: 51.385999999999996
|
| 2428 |
-
- type: ndcg_at_3
|
| 2429 |
-
value: 32.578
|
| 2430 |
-
- type: ndcg_at_5
|
| 2431 |
-
value: 32.351
|
| 2432 |
-
- type: precision_at_1
|
| 2433 |
-
value: 40.816
|
| 2434 |
-
- type: precision_at_10
|
| 2435 |
-
value: 26.531
|
| 2436 |
-
- type: precision_at_100
|
| 2437 |
-
value: 7.796
|
| 2438 |
-
- type: precision_at_1000
|
| 2439 |
-
value: 1.555
|
| 2440 |
-
- type: precision_at_3
|
| 2441 |
-
value: 32.653
|
| 2442 |
-
- type: precision_at_5
|
| 2443 |
-
value: 33.061
|
| 2444 |
-
- type: recall_at_1
|
| 2445 |
-
value: 3.006
|
| 2446 |
-
- type: recall_at_10
|
| 2447 |
-
value: 18.738
|
| 2448 |
-
- type: recall_at_100
|
| 2449 |
-
value: 48.058
|
| 2450 |
-
- type: recall_at_1000
|
| 2451 |
-
value: 83.41300000000001
|
| 2452 |
-
- type: recall_at_3
|
| 2453 |
-
value: 7.166
|
| 2454 |
-
- type: recall_at_5
|
| 2455 |
-
value: 12.102
|
| 2456 |
-
- task:
|
| 2457 |
-
type: Classification
|
| 2458 |
-
dataset:
|
| 2459 |
-
type: mteb/toxic_conversations_50k
|
| 2460 |
-
name: MTEB ToxicConversationsClassification
|
| 2461 |
-
config: default
|
| 2462 |
-
split: test
|
| 2463 |
-
revision: d7c0de2777da35d6aae2200a62c6e0e5af397c4c
|
| 2464 |
-
metrics:
|
| 2465 |
-
- type: accuracy
|
| 2466 |
-
value: 71.4178
|
| 2467 |
-
- type: ap
|
| 2468 |
-
value: 14.648781342150446
|
| 2469 |
-
- type: f1
|
| 2470 |
-
value: 55.07299194946378
|
| 2471 |
-
- task:
|
| 2472 |
-
type: Classification
|
| 2473 |
-
dataset:
|
| 2474 |
-
type: mteb/tweet_sentiment_extraction
|
| 2475 |
-
name: MTEB TweetSentimentExtractionClassification
|
| 2476 |
-
config: default
|
| 2477 |
-
split: test
|
| 2478 |
-
revision: d604517c81ca91fe16a244d1248fc021f9ecee7a
|
| 2479 |
-
metrics:
|
| 2480 |
-
- type: accuracy
|
| 2481 |
-
value: 60.919637804187886
|
| 2482 |
-
- type: f1
|
| 2483 |
-
value: 61.24122013967399
|
| 2484 |
-
- task:
|
| 2485 |
-
type: Clustering
|
| 2486 |
-
dataset:
|
| 2487 |
-
type: mteb/twentynewsgroups-clustering
|
| 2488 |
-
name: MTEB TwentyNewsgroupsClustering
|
| 2489 |
-
config: default
|
| 2490 |
-
split: test
|
| 2491 |
-
revision: 6125ec4e24fa026cec8a478383ee943acfbd5449
|
| 2492 |
-
metrics:
|
| 2493 |
-
- type: v_measure
|
| 2494 |
-
value: 49.207896583685695
|
| 2495 |
-
- task:
|
| 2496 |
-
type: PairClassification
|
| 2497 |
-
dataset:
|
| 2498 |
-
type: mteb/twittersemeval2015-pairclassification
|
| 2499 |
-
name: MTEB TwitterSemEval2015
|
| 2500 |
-
config: default
|
| 2501 |
-
split: test
|
| 2502 |
-
revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1
|
| 2503 |
-
metrics:
|
| 2504 |
-
- type: cos_sim_accuracy
|
| 2505 |
-
value: 86.23114978840078
|
| 2506 |
-
- type: cos_sim_ap
|
| 2507 |
-
value: 74.26624727825818
|
| 2508 |
-
- type: cos_sim_f1
|
| 2509 |
-
value: 68.72377190817083
|
| 2510 |
-
- type: cos_sim_precision
|
| 2511 |
-
value: 64.56400742115028
|
| 2512 |
-
- type: cos_sim_recall
|
| 2513 |
-
value: 73.45646437994723
|
| 2514 |
-
- type: dot_accuracy
|
| 2515 |
-
value: 86.23114978840078
|
| 2516 |
-
- type: dot_ap
|
| 2517 |
-
value: 74.26624032659652
|
| 2518 |
-
- type: dot_f1
|
| 2519 |
-
value: 68.72377190817083
|
| 2520 |
-
- type: dot_precision
|
| 2521 |
-
value: 64.56400742115028
|
| 2522 |
-
- type: dot_recall
|
| 2523 |
-
value: 73.45646437994723
|
| 2524 |
-
- type: euclidean_accuracy
|
| 2525 |
-
value: 86.23114978840078
|
| 2526 |
-
- type: euclidean_ap
|
| 2527 |
-
value: 74.26624714480556
|
| 2528 |
-
- type: euclidean_f1
|
| 2529 |
-
value: 68.72377190817083
|
| 2530 |
-
- type: euclidean_precision
|
| 2531 |
-
value: 64.56400742115028
|
| 2532 |
-
- type: euclidean_recall
|
| 2533 |
-
value: 73.45646437994723
|
| 2534 |
-
- type: manhattan_accuracy
|
| 2535 |
-
value: 86.16558383501221
|
| 2536 |
-
- type: manhattan_ap
|
| 2537 |
-
value: 74.2091943976357
|
| 2538 |
-
- type: manhattan_f1
|
| 2539 |
-
value: 68.64221520524654
|
| 2540 |
-
- type: manhattan_precision
|
| 2541 |
-
value: 63.59135913591359
|
| 2542 |
-
- type: manhattan_recall
|
| 2543 |
-
value: 74.5646437994723
|
| 2544 |
-
- type: max_accuracy
|
| 2545 |
-
value: 86.23114978840078
|
| 2546 |
-
- type: max_ap
|
| 2547 |
-
value: 74.26624727825818
|
| 2548 |
-
- type: max_f1
|
| 2549 |
-
value: 68.72377190817083
|
| 2550 |
-
- task:
|
| 2551 |
-
type: PairClassification
|
| 2552 |
-
dataset:
|
| 2553 |
-
type: mteb/twitterurlcorpus-pairclassification
|
| 2554 |
-
name: MTEB TwitterURLCorpus
|
| 2555 |
-
config: default
|
| 2556 |
-
split: test
|
| 2557 |
-
revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf
|
| 2558 |
-
metrics:
|
| 2559 |
-
- type: cos_sim_accuracy
|
| 2560 |
-
value: 89.3681841114604
|
| 2561 |
-
- type: cos_sim_ap
|
| 2562 |
-
value: 86.65166387498546
|
| 2563 |
-
- type: cos_sim_f1
|
| 2564 |
-
value: 79.02581944698774
|
| 2565 |
-
- type: cos_sim_precision
|
| 2566 |
-
value: 75.35796605434099
|
| 2567 |
-
- type: cos_sim_recall
|
| 2568 |
-
value: 83.06898675700647
|
| 2569 |
-
- type: dot_accuracy
|
| 2570 |
-
value: 89.3681841114604
|
| 2571 |
-
- type: dot_ap
|
| 2572 |
-
value: 86.65166019802056
|
| 2573 |
-
- type: dot_f1
|
| 2574 |
-
value: 79.02581944698774
|
| 2575 |
-
- type: dot_precision
|
| 2576 |
-
value: 75.35796605434099
|
| 2577 |
-
- type: dot_recall
|
| 2578 |
-
value: 83.06898675700647
|
| 2579 |
-
- type: euclidean_accuracy
|
| 2580 |
-
value: 89.3681841114604
|
| 2581 |
-
- type: euclidean_ap
|
| 2582 |
-
value: 86.65166462876266
|
| 2583 |
-
- type: euclidean_f1
|
| 2584 |
-
value: 79.02581944698774
|
| 2585 |
-
- type: euclidean_precision
|
| 2586 |
-
value: 75.35796605434099
|
| 2587 |
-
- type: euclidean_recall
|
| 2588 |
-
value: 83.06898675700647
|
| 2589 |
-
- type: manhattan_accuracy
|
| 2590 |
-
value: 89.36624364497226
|
| 2591 |
-
- type: manhattan_ap
|
| 2592 |
-
value: 86.65076471274106
|
| 2593 |
-
- type: manhattan_f1
|
| 2594 |
-
value: 79.07408783532733
|
| 2595 |
-
- type: manhattan_precision
|
| 2596 |
-
value: 76.41102972856527
|
| 2597 |
-
- type: manhattan_recall
|
| 2598 |
-
value: 81.92947336002464
|
| 2599 |
-
- type: max_accuracy
|
| 2600 |
-
value: 89.3681841114604
|
| 2601 |
-
- type: max_ap
|
| 2602 |
-
value: 86.65166462876266
|
| 2603 |
-
- type: max_f1
|
| 2604 |
-
value: 79.07408783532733
|
| 2605 |
-
license: apache-2.0
|
| 2606 |
-
language:
|
| 2607 |
-
- en
|
| 2608 |
---
|
| 2609 |
|
| 2610 |
-
# nomic-embed-text-v1.5
|
| 2611 |
-
|
| 2612 |
-
[
|
| 2613 |
-
|
| 2614 |
-
|
| 2615 |
-
|
| 2616 |
-
|
| 2617 |
-
|
| 2618 |
-
|
| 2619 |
-
|
| 2620 |
-
|
| 2621 |
-
|
| 2622 |
-
|
| 2623 |
-
|
| 2624 |
-
|
| 2625 |
-
|
| 2626 |
-
|
| 2627 |
-
|
| 2628 |
-
|
| 2629 |
-
|
| 2630 |
-
|
| 2631 |
-
|
| 2632 |
-
|
| 2633 |
-
|
| 2634 |
-
|
| 2635 |
-
|
| 2636 |
-
|
| 2637 |
-
|
| 2638 |
-
|
| 2639 |
-
|
| 2640 |
-
|
| 2641 |
-
|
| 2642 |
-
|
| 2643 |
-
|
| 2644 |
-
|
| 2645 |
-
|
| 2646 |
-
|
| 2647 |
-
|
| 2648 |
-
|
| 2649 |
-
|
| 2650 |
-
|
| 2651 |
-
|
| 2652 |
-
|
| 2653 |
-
|
| 2654 |
-
|
| 2655 |
-
|
| 2656 |
-
|
| 2657 |
-
|
| 2658 |
-
|
| 2659 |
-
|
| 2660 |
-
|
| 2661 |
-
|
| 2662 |
-
|
| 2663 |
-
|
| 2664 |
-
|
| 2665 |
-
|
| 2666 |
-
|
| 2667 |
-
|
| 2668 |
-
|
| 2669 |
-
|
| 2670 |
-
|
| 2671 |
-
|
| 2672 |
-
|
| 2673 |
-
|
| 2674 |
-
|
| 2675 |
-
|
| 2676 |
-
|
| 2677 |
-
|
| 2678 |
-
|
| 2679 |
-
|
| 2680 |
-
|
| 2681 |
-
|
| 2682 |
-
|
| 2683 |
-
|
| 2684 |
-
|
| 2685 |
-
|
| 2686 |
-
|
| 2687 |
-
|
| 2688 |
-
|
| 2689 |
-
|
| 2690 |
-
|
| 2691 |
-
|
| 2692 |
-
|
| 2693 |
-
|
| 2694 |
-
|
| 2695 |
-
|
| 2696 |
-
|
| 2697 |
-
|
| 2698 |
-
|
| 2699 |
-
|
| 2700 |
-
|
| 2701 |
-
|
| 2702 |
-
|
| 2703 |
-
|
| 2704 |
-
|
| 2705 |
-
|
| 2706 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2707 |
|
| 2708 |
-
|
| 2709 |
-
|
| 2710 |
-
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
|
| 2711 |
-
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
|
| 2712 |
-
|
| 2713 |
-
sentences = ['search_query: What is TSNE?', 'search_query: Who is Laurens van der Maaten?']
|
| 2714 |
-
|
| 2715 |
-
tokenizer = AutoTokenizer.from_pretrained('bert-base-uncased')
|
| 2716 |
-
model = AutoModel.from_pretrained('nomic-ai/nomic-embed-text-v1.5', trust_remote_code=True, safe_serialization=True)
|
| 2717 |
-
model.eval()
|
| 2718 |
-
|
| 2719 |
-
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
|
| 2720 |
-
|
| 2721 |
-
+ matryoshka_dim = 512
|
| 2722 |
-
|
| 2723 |
-
with torch.no_grad():
|
| 2724 |
-
model_output = model(**encoded_input)
|
| 2725 |
-
|
| 2726 |
-
embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
|
| 2727 |
-
+ embeddings = F.layer_norm(embeddings, normalized_shape=(embeddings.shape[1],))
|
| 2728 |
-
+ embeddings = embeddings[:, :matryoshka_dim]
|
| 2729 |
-
embeddings = F.normalize(embeddings, p=2, dim=1)
|
| 2730 |
-
print(embeddings)
|
| 2731 |
-
```
|
| 2732 |
-
|
| 2733 |
-
The model natively supports scaling of the sequence length past 2048 tokens. To do so,
|
| 2734 |
-
|
| 2735 |
-
```diff
|
| 2736 |
-
- tokenizer = AutoTokenizer.from_pretrained('bert-base-uncased')
|
| 2737 |
-
+ tokenizer = AutoTokenizer.from_pretrained('bert-base-uncased', model_max_length=8192)
|
| 2738 |
-
|
| 2739 |
-
|
| 2740 |
-
- model = AutoModel.from_pretrained('nomic-ai/nomic-embed-text-v1.5', trust_remote_code=True)
|
| 2741 |
-
+ model = AutoModel.from_pretrained('nomic-ai/nomic-embed-text-v1.5', trust_remote_code=True, rotary_scaling_factor=2)
|
| 2742 |
-
```
|
| 2743 |
-
|
| 2744 |
-
### Transformers.js
|
| 2745 |
-
|
| 2746 |
-
```js
|
| 2747 |
-
import { pipeline, layer_norm } from '@huggingface/transformers';
|
| 2748 |
-
|
| 2749 |
-
// Create a feature extraction pipeline
|
| 2750 |
-
const extractor = await pipeline('feature-extraction', 'nomic-ai/nomic-embed-text-v1.5');
|
| 2751 |
-
|
| 2752 |
-
// Define sentences
|
| 2753 |
-
const texts = ['search_query: What is TSNE?', 'search_query: Who is Laurens van der Maaten?'];
|
| 2754 |
-
|
| 2755 |
-
// Compute sentence embeddings
|
| 2756 |
-
let embeddings = await extractor(texts, { pooling: 'mean' });
|
| 2757 |
-
console.log(embeddings); // Tensor of shape [2, 768]
|
| 2758 |
-
|
| 2759 |
-
const matryoshka_dim = 512;
|
| 2760 |
-
embeddings = layer_norm(embeddings, [embeddings.dims[1]])
|
| 2761 |
-
.slice(null, [0, matryoshka_dim])
|
| 2762 |
-
.normalize(2, -1);
|
| 2763 |
-
console.log(embeddings.tolist());
|
| 2764 |
```
|
| 2765 |
|
| 2766 |
-
|
| 2767 |
-
## Nomic API
|
| 2768 |
-
|
| 2769 |
-
The easiest way to use Nomic Embed is through the Nomic Embedding API.
|
| 2770 |
-
|
| 2771 |
-
Generating embeddings with the `nomic` Python client is as easy as
|
| 2772 |
|
| 2773 |
```python
|
| 2774 |
-
from
|
| 2775 |
-
|
| 2776 |
-
output = embed.text(
|
| 2777 |
-
texts=['Nomic Embedding API', '#keepAIOpen'],
|
| 2778 |
-
model='nomic-embed-text-v1.5',
|
| 2779 |
-
task_type='search_document',
|
| 2780 |
-
dimensionality=256,
|
| 2781 |
-
)
|
| 2782 |
|
| 2783 |
-
|
|
|
|
|
|
|
|
|
|
| 2784 |
```
|
| 2785 |
|
| 2786 |
-
|
| 2787 |
-
|
| 2788 |
-
|
| 2789 |
-
|
| 2790 |
-
|
| 2791 |
-
|
| 2792 |
-
|
| 2793 |
-
|
| 2794 |
-
|
| 2795 |
-
|
| 2796 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2797 |
```
|
| 2798 |
|
| 2799 |
-
|
| 2800 |
-
|
| 2801 |
-
`nomic-embed-text-v1.5` is an improvement upon [Nomic Embed](https://huggingface.co/nomic-ai/nomic-embed-text-v1) that utilizes [Matryoshka Representation Learning](https://arxiv.org/abs/2205.13147) which gives developers the flexibility to trade off the embedding size for a negligible reduction in performance.
|
| 2802 |
-
|
| 2803 |
-
|
| 2804 |
-
| Name | SeqLen | Dimension | MTEB |
|
| 2805 |
-
| :-------------------------------:| :----- | :-------- | :------: |
|
| 2806 |
-
| nomic-embed-text-v1 | 8192 | 768 | **62.39** |
|
| 2807 |
-
| nomic-embed-text-v1.5 | 8192 | 768 | 62.28 |
|
| 2808 |
-
| nomic-embed-text-v1.5 | 8192 | 512 | 61.96 |
|
| 2809 |
-
| nomic-embed-text-v1.5 | 8192 | 256 | 61.04 |
|
| 2810 |
-
| nomic-embed-text-v1.5 | 8192 | 128 | 59.34 |
|
| 2811 |
-
| nomic-embed-text-v1.5 | 8192 | 64 | 56.10 |
|
| 2812 |
-
|
| 2813 |
|
| 2814 |
-
|
|
|
|
| 2815 |
|
| 2816 |
-
|
| 2817 |
-
|
| 2818 |
|
| 2819 |
-
|
|
|
|
| 2820 |
|
| 2821 |
-
|
| 2822 |
-
|
| 2823 |
|
| 2824 |
-
|
| 2825 |
-
|
| 2826 |
-
For more details, see the Nomic Embed [Technical Report](https://static.nomic.ai/reports/2024_Nomic_Embed_Text_Technical_Report.pdf) and corresponding [blog post](https://blog.nomic.ai/posts/nomic-embed-matryoshka).
|
| 2827 |
-
|
| 2828 |
-
Training data to train the models is released in its entirety. For more details, see the `contrastors` [repository](https://github.com/nomic-ai/contrastors)
|
| 2829 |
-
|
| 2830 |
-
|
| 2831 |
-
# Join the Nomic Community
|
| 2832 |
-
|
| 2833 |
-
- Nomic: [https://nomic.ai](https://nomic.ai)
|
| 2834 |
-
- Discord: [https://discord.gg/myY5YDR8z8](https://discord.gg/myY5YDR8z8)
|
| 2835 |
-
- Twitter: [https://twitter.com/nomic_ai](https://twitter.com/nomic_ai)
|
| 2836 |
-
|
| 2837 |
-
|
| 2838 |
-
# Citation
|
| 2839 |
-
|
| 2840 |
-
If you find the model, dataset, or training code useful, please cite our work
|
| 2841 |
-
|
| 2842 |
-
```bibtex
|
| 2843 |
-
@misc{nussbaum2024nomic,
|
| 2844 |
-
title={Nomic Embed: Training a Reproducible Long Context Text Embedder},
|
| 2845 |
-
author={Zach Nussbaum and John X. Morris and Brandon Duderstadt and Andriy Mulyar},
|
| 2846 |
-
year={2024},
|
| 2847 |
-
eprint={2402.01613},
|
| 2848 |
-
archivePrefix={arXiv},
|
| 2849 |
-
primaryClass={cs.CL}
|
| 2850 |
-
}
|
| 2851 |
-
```
|
|
|
|
| 1 |
---
|
|
|
|
|
|
|
| 2 |
tags:
|
| 3 |
+
- setfit
|
| 4 |
+
- sentence-transformers
|
| 5 |
+
- text-classification
|
| 6 |
+
- generated_from_setfit_trainer
|
| 7 |
+
widget:
|
| 8 |
+
- text: Add a navigation menu text
|
| 9 |
+
- text: Change to square format
|
| 10 |
+
- text: Change the button text
|
| 11 |
+
- text: Make the object stand alone
|
| 12 |
+
- text: Mirror the logo vertically
|
| 13 |
+
metrics:
|
| 14 |
+
- accuracy
|
| 15 |
+
pipeline_tag: text-classification
|
| 16 |
+
library_name: setfit
|
| 17 |
+
inference: true
|
| 18 |
+
base_model: nomic-ai/nomic-embed-text-v1.5
|
| 19 |
model-index:
|
| 20 |
+
- name: SetFit with nomic-ai/nomic-embed-text-v1.5
|
| 21 |
results:
|
| 22 |
- task:
|
| 23 |
+
type: text-classification
|
| 24 |
+
name: Text Classification
|
| 25 |
dataset:
|
| 26 |
+
name: Unknown
|
| 27 |
+
type: unknown
|
|
|
|
| 28 |
split: test
|
|
|
|
| 29 |
metrics:
|
| 30 |
- type: accuracy
|
| 31 |
+
value: 0.5353535353535354
|
| 32 |
+
name: Accuracy
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 33 |
---
|
| 34 |
|
| 35 |
+
# SetFit with nomic-ai/nomic-embed-text-v1.5
|
| 36 |
+
|
| 37 |
+
This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [nomic-ai/nomic-embed-text-v1.5](https://huggingface.co/nomic-ai/nomic-embed-text-v1.5) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
|
| 38 |
+
|
| 39 |
+
The model has been trained using an efficient few-shot learning technique that involves:
|
| 40 |
+
|
| 41 |
+
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
|
| 42 |
+
2. Training a classification head with features from the fine-tuned Sentence Transformer.
|
| 43 |
+
|
| 44 |
+
## Model Details
|
| 45 |
+
|
| 46 |
+
### Model Description
|
| 47 |
+
- **Model Type:** SetFit
|
| 48 |
+
- **Sentence Transformer body:** [nomic-ai/nomic-embed-text-v1.5](https://huggingface.co/nomic-ai/nomic-embed-text-v1.5)
|
| 49 |
+
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
|
| 50 |
+
- **Maximum Sequence Length:** 8192 tokens
|
| 51 |
+
- **Number of Classes:** 63 classes
|
| 52 |
+
<!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
|
| 53 |
+
<!-- - **Language:** Unknown -->
|
| 54 |
+
<!-- - **License:** Unknown -->
|
| 55 |
+
|
| 56 |
+
### Model Sources
|
| 57 |
+
|
| 58 |
+
- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
|
| 59 |
+
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
|
| 60 |
+
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
|
| 61 |
+
|
| 62 |
+
### Model Labels
|
| 63 |
+
| Label | Examples |
|
| 64 |
+
|:------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|
| 65 |
+
| 0 | <ul><li>'Add a corporate presentation background'</li><li>'Insert a modern icon set for the design'</li><li>'Add a mountain landscape background to the page'</li></ul> |
|
| 66 |
+
| 1 | <ul><li>'Find me some shape options for this design'</li><li>'I need some professional-looking assets'</li><li>'Can you recommend some images that would work well here?'</li></ul> |
|
| 67 |
+
| 2 | <ul><li>'Add a date and time for the event'</li><li>'Insert a disclaimer text'</li><li>'Add a navigation menu text'</li></ul> |
|
| 68 |
+
| 3 | <ul><li>'Distribute the icons evenly'</li><li>'Align all the text elements to the left'</li><li>'Align the footer elements'</li></ul> |
|
| 69 |
+
| 4 | <ul><li>'Make the button pulse'</li><li>'Add a flip animation'</li><li>'Make the text glow'</li></ul> |
|
| 70 |
+
| 5 | <ul><li>'Make everything fade in gradually'</li><li>'Make the page bounce in from the top'</li><li>'Add a spiral animation to the page'</li></ul> |
|
| 71 |
+
| 6 | <ul><li>'Change the building color'</li><li>'Remove the unwanted text overlay'</li><li>'Add a party hat to the dog'</li></ul> |
|
| 72 |
+
| 7 | <ul><li>'Remove the draft image'</li><li>'Delete the backup copy'</li><li>'Remove the unwanted image'</li></ul> |
|
| 73 |
+
| 8 | <ul><li>'What image editing tools do you have?'</li><li>'How do I create a template?'</li><li>'How can I align elements properly?'</li></ul> |
|
| 74 |
+
| 9 | <ul><li>'Distribute the buttons around the center image'</li><li>'Place the elements in a circular arrangement'</li><li>'Arrange the images in a circular layout'</li></ul> |
|
| 75 |
+
| 10 | <ul><li>'Duplicate the design'</li><li>'Make a second version'</li><li>'Create a new version'</li></ul> |
|
| 76 |
+
| 11 | <ul><li>'Duplicate the icon and move it'</li><li>'Duplicate the text and align it differently'</li><li>'Copy the image and apply a filter'</li></ul> |
|
| 77 |
+
| 12 | <ul><li>'Duplicate the logo to page 3'</li><li>'Copy the text to the last page'</li><li>'Copy the navigation to the next page'</li></ul> |
|
| 78 |
+
| 13 | <ul><li>'Fix the typographic errors'</li><li>'Improve the text flow'</li><li>'Fix the font consistency'</li></ul> |
|
| 79 |
+
| 14 | <ul><li>'Mirror the icon horizontally'</li><li>'Mirror the logo vertically'</li><li>'Flip the image horizontally'</li></ul> |
|
| 80 |
+
| 15 | <ul><li>'Create a photo of a futuristic city'</li><li>'Generate a picture of a tropical beach'</li><li>'Generate a picture of a cat playing with yarn'</li></ul> |
|
| 81 |
+
| 16 | <ul><li>'Create a card for a birthday party'</li><li>'Create a flyer for a happy birthday party'</li><li>'Generate an Instagram post for a birthday'</li></ul> |
|
| 82 |
+
| 17 | <ul><li>'Group the navigation elements'</li><li>'Combine the shape and text'</li><li>'Combine the image and overlay'</li></ul> |
|
| 83 |
+
| 18 | <ul><li>'Move the shape to the bottom'</li><li>'Position the icon at (0, 0)'</li><li>'Move the shape to coordinates (100, 100)'</li></ul> |
|
| 84 |
+
| 19 | <ul><li>'Add a sepia tone effect'</li><li>'Apply a modern filter'</li><li>'Make the image black and white'</li></ul> |
|
| 85 |
+
| 20 | <ul><li>'Suggest some shape designs'</li><li>'Show me pattern options'</li><li>'Find me border designs'</li></ul> |
|
| 86 |
+
| 21 | <ul><li>'Restore the previous opacity'</li><li>'Redo the text edit'</li><li>'Restore the previous color'</li></ul> |
|
| 87 |
+
| 22 | <ul><li>'Make the image have no background'</li><li>'Remove the background from the animal'</li><li>'Remove the background from the item'</li></ul> |
|
| 88 |
+
| 23 | <ul><li>'Delete the unwanted text'</li><li>'Remove the person from the background'</li><li>'Remove the graffiti'</li></ul> |
|
| 89 |
+
| 24 | <ul><li>'Replace the illustration'</li><li>'Change the background image'</li><li>'Change the product photo'</li></ul> |
|
| 90 |
+
| 25 | <ul><li>'Change the button text'</li><li>'Update the navigation text'</li><li>'Update the description'</li></ul> |
|
| 91 |
+
| 26 | <ul><li>'Remove all modifications'</li><li>'Restore the original colors'</li><li>'Remove all effects from the image'</li></ul> |
|
| 92 |
+
| 27 | <ul><li>'Scale the text up'</li><li>'Make the shape smaller'</li><li>'Reduce the shape size'</li></ul> |
|
| 93 |
+
| 28 | <ul><li>'Change to square format'</li><li>'Change to poster size'</li><li>'Make the page smaller'</li></ul> |
|
| 94 |
+
| 29 | <ul><li>'Rotate the text 45 degrees'</li><li>'Rotate the text 15 degrees'</li><li>'Turn the image counterclockwise'</li></ul> |
|
| 95 |
+
| 30 | <ul><li>'Distribute the shapes randomly'</li><li>'Distribute the leaves randomly on the page'</li><li>'Scatter the confetti around the design'</li></ul> |
|
| 96 |
+
| 31 | <ul><li>'Select the sidebar elements'</li><li>'Select the background image'</li><li>'Select the footer content'</li></ul> |
|
| 97 |
+
| 32 | <ul><li>'Change to a dark background'</li><li>'Make the background transparent'</li><li>'Change to a neutral background'</li></ul> |
|
| 98 |
+
| 33 | <ul><li>'Set the blend mode to soft light'</li><li>'Set the blend mode to darken'</li><li>'Set the blend mode to normal'</li></ul> |
|
| 99 |
+
| 34 | <ul><li>'Add a depth of field blur'</li><li>'Add a directional blur'</li><li>'Add a soft blur effect'</li></ul> |
|
| 100 |
+
| 35 | <ul><li>'Change the border style to solid'</li><li>'Change the border to dotted'</li><li>'Add a double border to the image'</li></ul> |
|
| 101 |
+
| 36 | <ul><li>'Brighten the shadows'</li><li>'Make the image brighter'</li><li>'Brighten the highlights'</li></ul> |
|
| 102 |
+
| 37 | <ul><li>'Bring the title to the front'</li><li>'Bring the shape to the front'</li><li>'Move the logo to the top layer'</li></ul> |
|
| 103 |
+
| 38 | <ul><li>'Make the image more intense'</li><li>'Enhance the contrast ratio'</li><li>'Increase the tonal range'</li></ul> |
|
| 104 |
+
| 39 | <ul><li>'Make the image round'</li><li>'Make the image rectangular'</li><li>'Crop to a heart shape'</li></ul> |
|
| 105 |
+
| 40 | <ul><li>'Add a sharp drop shadow'</li><li>'Add a gradient shadow'</li><li>'Add a hard shadow edge'</li></ul> |
|
| 106 |
+
| 41 | <ul><li>'Fill the shape with orange'</li><li>'Fill the element with brown'</li><li>'Change the shape color to blue'</li></ul> |
|
| 107 |
+
| 42 | <ul><li>'Make the text more readable'</li><li>'Increase the heading size'</li><li>'Make the description smaller'</li></ul> |
|
| 108 |
+
| 43 | <ul><li>'Make the text bold and italic'</li><li>'Add strikethrough to the text'</li><li>'Add bold to the title'</li></ul> |
|
| 109 |
+
| 44 | <ul><li>'Use a contemporary font'</li><li>'Use a professional font'</li><li>'Use a serif font for the heading'</li></ul> |
|
| 110 |
+
| 45 | <ul><li>'Make the bright areas brighter'</li><li>'Make the highlights more prominent'</li><li>'Enhance the bright spots'</li></ul> |
|
| 111 |
+
| 46 | <ul><li>'Set the image as background layer'</li><li>'Set the picture as background fill'</li><li>'Make the photo cover the background'</li></ul> |
|
| 112 |
+
| 47 | <ul><li>'Reduce the character spacing'</li><li>'Add letter spacing to the logo'</li><li>'Increase spacing between characters'</li></ul> |
|
| 113 |
+
| 48 | <ul><li>'Make the lines tighter'</li><li>'Spread out the text lines'</li><li>'Increase the paragraph spacing'</li></ul> |
|
| 114 |
+
| 49 | <ul><li>'Reduce the opacity of the overlay'</li><li>'Increase the transparency of the image'</li><li>'Make the shape more opaque'</li></ul> |
|
| 115 |
+
| 50 | <ul><li>'Make the paragraphs closer together'</li><li>'Increase the text block spacing'</li><li>'Reduce the paragraph spacing'</li></ul> |
|
| 116 |
+
| 51 | <ul><li>'Make the colors more intense'</li><li>'Increase the color depth'</li><li>'Make the image more colorful'</li></ul> |
|
| 117 |
+
| 52 | <ul><li>'Darken the shadows in the image'</li><li>'Increase the shadow intensity'</li><li>'Enhance the shadow depth'</li></ul> |
|
| 118 |
+
| 53 | <ul><li>'Enhance the image clarity'</li><li>'Increase the image sharpness'</li><li>'Sharpen the image details'</li></ul> |
|
| 119 |
+
| 54 | <ul><li>'Center the button text'</li><li>'Justify the paragraph text'</li><li>'Center the title text'</li></ul> |
|
| 120 |
+
| 55 | <ul><li>'Create a border around the text'</li><li>'Add a glow effect behind the text'</li><li>'Add a colored background to the text'</li></ul> |
|
| 121 |
+
| 56 | <ul><li>'Create text in a radial pattern'</li><li>'Create text that follows a circle'</li><li>'Create text that follows a shape'</li></ul> |
|
| 122 |
+
| 57 | <ul><li>'Convert to a bulleted list'</li><li>'Make the text into bullet points'</li><li>'Make the text into a list with bullets'</li></ul> |
|
| 123 |
+
| 58 | <ul><li>'Create a soft shadow behind the text'</li><li>'Add a dramatic shadow effect'</li><li>'Create a shadow for the text'</li></ul> |
|
| 124 |
+
| 59 | <ul><li>'Add warm undertones to the photo'</li><li>'Add warm color grading'</li><li>'Make the photo more golden hour'</li></ul> |
|
| 125 |
+
| 60 | <ul><li>'I need to add my own image'</li><li>'Open the image upload tool'</li><li>'Show me how to upload files'</li></ul> |
|
| 126 |
+
| 61 | <ul><li>'Revert the color change'</li><li>'Undo the last modification'</li><li>'Undo the text edit'</li></ul> |
|
| 127 |
+
| 62 | <ul><li>'Separate the grouped components'</li><li>'Ungroup the combined elements'</li><li>'Break up the grouped objects'</li></ul> |
|
| 128 |
+
|
| 129 |
+
## Evaluation
|
| 130 |
+
|
| 131 |
+
### Metrics
|
| 132 |
+
| Label | Accuracy |
|
| 133 |
+
|:--------|:---------|
|
| 134 |
+
| **all** | 0.5354 |
|
| 135 |
+
|
| 136 |
+
## Uses
|
| 137 |
+
|
| 138 |
+
### Direct Use for Inference
|
| 139 |
+
|
| 140 |
+
First install the SetFit library:
|
| 141 |
|
| 142 |
+
```bash
|
| 143 |
+
pip install setfit
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 144 |
```
|
| 145 |
|
| 146 |
+
Then you can load this model and run inference.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 147 |
|
| 148 |
```python
|
| 149 |
+
from setfit import SetFitModel
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 150 |
|
| 151 |
+
# Download from the 🤗 Hub
|
| 152 |
+
model = SetFitModel.from_pretrained("setfit_model_id")
|
| 153 |
+
# Run inference
|
| 154 |
+
preds = model("Change the button text")
|
| 155 |
```
|
| 156 |
|
| 157 |
+
<!--
|
| 158 |
+
### Downstream Use
|
| 159 |
+
|
| 160 |
+
*List how someone could finetune this model on their own dataset.*
|
| 161 |
+
-->
|
| 162 |
+
|
| 163 |
+
<!--
|
| 164 |
+
### Out-of-Scope Use
|
| 165 |
+
|
| 166 |
+
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
| 167 |
+
-->
|
| 168 |
+
|
| 169 |
+
<!--
|
| 170 |
+
## Bias, Risks and Limitations
|
| 171 |
+
|
| 172 |
+
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
| 173 |
+
-->
|
| 174 |
+
|
| 175 |
+
<!--
|
| 176 |
+
### Recommendations
|
| 177 |
+
|
| 178 |
+
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
| 179 |
+
-->
|
| 180 |
+
|
| 181 |
+
## Training Details
|
| 182 |
+
|
| 183 |
+
### Training Set Metrics
|
| 184 |
+
| Training set | Min | Median | Max |
|
| 185 |
+
|:-------------|:----|:-------|:----|
|
| 186 |
+
| Word count | 3 | 5.1778 | 10 |
|
| 187 |
+
|
| 188 |
+
| Label | Training Sample Count |
|
| 189 |
+
|:------|:----------------------|
|
| 190 |
+
| 0 | 5 |
|
| 191 |
+
| 1 | 5 |
|
| 192 |
+
| 2 | 5 |
|
| 193 |
+
| 3 | 5 |
|
| 194 |
+
| 4 | 5 |
|
| 195 |
+
| 5 | 5 |
|
| 196 |
+
| 6 | 5 |
|
| 197 |
+
| 7 | 5 |
|
| 198 |
+
| 8 | 5 |
|
| 199 |
+
| 9 | 5 |
|
| 200 |
+
| 10 | 5 |
|
| 201 |
+
| 11 | 5 |
|
| 202 |
+
| 12 | 5 |
|
| 203 |
+
| 13 | 5 |
|
| 204 |
+
| 14 | 5 |
|
| 205 |
+
| 15 | 5 |
|
| 206 |
+
| 16 | 5 |
|
| 207 |
+
| 17 | 5 |
|
| 208 |
+
| 18 | 5 |
|
| 209 |
+
| 19 | 5 |
|
| 210 |
+
| 20 | 5 |
|
| 211 |
+
| 21 | 5 |
|
| 212 |
+
| 22 | 5 |
|
| 213 |
+
| 23 | 5 |
|
| 214 |
+
| 24 | 5 |
|
| 215 |
+
| 25 | 5 |
|
| 216 |
+
| 26 | 5 |
|
| 217 |
+
| 27 | 5 |
|
| 218 |
+
| 28 | 5 |
|
| 219 |
+
| 29 | 5 |
|
| 220 |
+
| 30 | 5 |
|
| 221 |
+
| 31 | 5 |
|
| 222 |
+
| 32 | 5 |
|
| 223 |
+
| 33 | 5 |
|
| 224 |
+
| 34 | 5 |
|
| 225 |
+
| 35 | 5 |
|
| 226 |
+
| 36 | 5 |
|
| 227 |
+
| 37 | 5 |
|
| 228 |
+
| 38 | 5 |
|
| 229 |
+
| 39 | 5 |
|
| 230 |
+
| 40 | 5 |
|
| 231 |
+
| 41 | 5 |
|
| 232 |
+
| 42 | 5 |
|
| 233 |
+
| 43 | 5 |
|
| 234 |
+
| 44 | 5 |
|
| 235 |
+
| 45 | 5 |
|
| 236 |
+
| 46 | 5 |
|
| 237 |
+
| 47 | 5 |
|
| 238 |
+
| 48 | 5 |
|
| 239 |
+
| 49 | 5 |
|
| 240 |
+
| 50 | 5 |
|
| 241 |
+
| 51 | 5 |
|
| 242 |
+
| 52 | 5 |
|
| 243 |
+
| 53 | 5 |
|
| 244 |
+
| 54 | 5 |
|
| 245 |
+
| 55 | 5 |
|
| 246 |
+
| 56 | 5 |
|
| 247 |
+
| 57 | 5 |
|
| 248 |
+
| 58 | 5 |
|
| 249 |
+
| 59 | 5 |
|
| 250 |
+
| 60 | 5 |
|
| 251 |
+
| 61 | 5 |
|
| 252 |
+
| 62 | 5 |
|
| 253 |
+
|
| 254 |
+
### Training Hyperparameters
|
| 255 |
+
- batch_size: (64, 64)
|
| 256 |
+
- num_epochs: (1, 1)
|
| 257 |
+
- max_steps: -1
|
| 258 |
+
- sampling_strategy: oversampling
|
| 259 |
+
- body_learning_rate: (2e-05, 1e-05)
|
| 260 |
+
- head_learning_rate: 0.01
|
| 261 |
+
- loss: CosineSimilarityLoss
|
| 262 |
+
- distance_metric: cosine_distance
|
| 263 |
+
- margin: 0.25
|
| 264 |
+
- end_to_end: False
|
| 265 |
+
- use_amp: False
|
| 266 |
+
- warmup_proportion: 0.1
|
| 267 |
+
- l2_weight: 0.01
|
| 268 |
+
- seed: 42
|
| 269 |
+
- eval_max_steps: -1
|
| 270 |
+
- load_best_model_at_end: False
|
| 271 |
+
|
| 272 |
+
### Training Results
|
| 273 |
+
| Epoch | Step | Training Loss | Validation Loss |
|
| 274 |
+
|:------:|:----:|:-------------:|:---------------:|
|
| 275 |
+
| 0.0007 | 1 | 0.1545 | - |
|
| 276 |
+
| 0.0328 | 50 | 0.1187 | - |
|
| 277 |
+
| 0.0655 | 100 | 0.0521 | - |
|
| 278 |
+
| 0.0983 | 150 | 0.0208 | - |
|
| 279 |
+
| 0.1311 | 200 | 0.0123 | - |
|
| 280 |
+
| 0.1638 | 250 | 0.0096 | - |
|
| 281 |
+
| 0.1966 | 300 | 0.0056 | - |
|
| 282 |
+
| 0.2294 | 350 | 0.0036 | - |
|
| 283 |
+
| 0.2621 | 400 | 0.0027 | - |
|
| 284 |
+
| 0.2949 | 450 | 0.0017 | - |
|
| 285 |
+
| 0.3277 | 500 | 0.0007 | - |
|
| 286 |
+
| 0.3604 | 550 | 0.0009 | - |
|
| 287 |
+
| 0.3932 | 600 | 0.0009 | - |
|
| 288 |
+
| 0.4260 | 650 | 0.0003 | - |
|
| 289 |
+
| 0.4587 | 700 | 0.0003 | - |
|
| 290 |
+
| 0.4915 | 750 | 0.0004 | - |
|
| 291 |
+
| 0.5242 | 800 | 0.0004 | - |
|
| 292 |
+
| 0.5570 | 850 | 0.0002 | - |
|
| 293 |
+
| 0.5898 | 900 | 0.0001 | - |
|
| 294 |
+
| 0.6225 | 950 | 0.0001 | - |
|
| 295 |
+
| 0.6553 | 1000 | 0.0001 | - |
|
| 296 |
+
| 0.6881 | 1050 | 0.0001 | - |
|
| 297 |
+
| 0.7208 | 1100 | 0.0001 | - |
|
| 298 |
+
| 0.7536 | 1150 | 0.0001 | - |
|
| 299 |
+
| 0.7864 | 1200 | 0.0001 | - |
|
| 300 |
+
| 0.8191 | 1250 | 0.0001 | - |
|
| 301 |
+
| 0.8519 | 1300 | 0.0001 | - |
|
| 302 |
+
| 0.8847 | 1350 | 0.0001 | - |
|
| 303 |
+
| 0.9174 | 1400 | 0.0001 | - |
|
| 304 |
+
| 0.9502 | 1450 | 0.0001 | - |
|
| 305 |
+
| 0.9830 | 1500 | 0.0001 | - |
|
| 306 |
+
|
| 307 |
+
### Framework Versions
|
| 308 |
+
- Python: 3.12.11
|
| 309 |
+
- SetFit: 1.1.3
|
| 310 |
+
- Sentence Transformers: 5.1.0
|
| 311 |
+
- Transformers: 4.54.1
|
| 312 |
+
- PyTorch: 2.7.1
|
| 313 |
+
- Datasets: 4.0.0
|
| 314 |
+
- Tokenizers: 0.21.4
|
| 315 |
+
|
| 316 |
+
## Citation
|
| 317 |
+
|
| 318 |
+
### BibTeX
|
| 319 |
+
```bibtex
|
| 320 |
+
@article{https://doi.org/10.48550/arxiv.2209.11055,
|
| 321 |
+
doi = {10.48550/ARXIV.2209.11055},
|
| 322 |
+
url = {https://arxiv.org/abs/2209.11055},
|
| 323 |
+
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
|
| 324 |
+
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
|
| 325 |
+
title = {Efficient Few-Shot Learning Without Prompts},
|
| 326 |
+
publisher = {arXiv},
|
| 327 |
+
year = {2022},
|
| 328 |
+
copyright = {Creative Commons Attribution 4.0 International}
|
| 329 |
+
}
|
| 330 |
```
|
| 331 |
|
| 332 |
+
<!--
|
| 333 |
+
## Glossary
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 334 |
|
| 335 |
+
*Clearly define terms in order to be accessible across audiences.*
|
| 336 |
+
-->
|
| 337 |
|
| 338 |
+
<!--
|
| 339 |
+
## Model Card Authors
|
| 340 |
|
| 341 |
+
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
| 342 |
+
-->
|
| 343 |
|
| 344 |
+
<!--
|
| 345 |
+
## Model Card Contact
|
| 346 |
|
| 347 |
+
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
| 348 |
+
-->
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
config_setfit.json
CHANGED
|
@@ -1,68 +1,68 @@
|
|
| 1 |
{
|
| 2 |
"normalize_embeddings": false,
|
| 3 |
"labels": [
|
| 4 |
-
|
| 5 |
-
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
]
|
| 68 |
}
|
|
|
|
| 1 |
{
|
| 2 |
"normalize_embeddings": false,
|
| 3 |
"labels": [
|
| 4 |
+
0,
|
| 5 |
+
1,
|
| 6 |
+
2,
|
| 7 |
+
3,
|
| 8 |
+
4,
|
| 9 |
+
5,
|
| 10 |
+
6,
|
| 11 |
+
7,
|
| 12 |
+
8,
|
| 13 |
+
9,
|
| 14 |
+
10,
|
| 15 |
+
11,
|
| 16 |
+
12,
|
| 17 |
+
13,
|
| 18 |
+
14,
|
| 19 |
+
15,
|
| 20 |
+
16,
|
| 21 |
+
17,
|
| 22 |
+
18,
|
| 23 |
+
19,
|
| 24 |
+
20,
|
| 25 |
+
21,
|
| 26 |
+
22,
|
| 27 |
+
23,
|
| 28 |
+
24,
|
| 29 |
+
25,
|
| 30 |
+
26,
|
| 31 |
+
27,
|
| 32 |
+
28,
|
| 33 |
+
29,
|
| 34 |
+
30,
|
| 35 |
+
31,
|
| 36 |
+
32,
|
| 37 |
+
33,
|
| 38 |
+
34,
|
| 39 |
+
35,
|
| 40 |
+
36,
|
| 41 |
+
37,
|
| 42 |
+
38,
|
| 43 |
+
39,
|
| 44 |
+
40,
|
| 45 |
+
41,
|
| 46 |
+
42,
|
| 47 |
+
43,
|
| 48 |
+
44,
|
| 49 |
+
45,
|
| 50 |
+
46,
|
| 51 |
+
47,
|
| 52 |
+
48,
|
| 53 |
+
49,
|
| 54 |
+
50,
|
| 55 |
+
51,
|
| 56 |
+
52,
|
| 57 |
+
53,
|
| 58 |
+
54,
|
| 59 |
+
55,
|
| 60 |
+
56,
|
| 61 |
+
57,
|
| 62 |
+
58,
|
| 63 |
+
59,
|
| 64 |
+
60,
|
| 65 |
+
61,
|
| 66 |
+
62
|
| 67 |
]
|
| 68 |
}
|
model.safetensors
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
size 546938168
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:fffecbd38859dda02c39c881c1dd347654613c58bb22dcd705706dd3c9247709
|
| 3 |
size 546938168
|
model_head.pkl
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
size 388927
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:963cbad21c41b69e67104f59ae67989240513569fb9d1218df64a659c819609a
|
| 3 |
size 388927
|