Nano-Llama-Base / README.md
vishesh-t27's picture
Update README.md
925ac6f verified
---
language:
- en
license: mit
model-index:
- name: Nano-Llama
results: []
tags:
- pytorch
- causal-lm
- text-generation
- fineweb
datasets:
- HuggingFaceFW/fineweb
library_name: transformers
---
# Nano-Llama
A compact 67M parameter LLaMA-2-style language model pretrained on FineWeb dataset.
## Model Details
- **Architecture**: LLaMA-2-style transformer
- **Parameters**: 678M
- **Training Data**: FineWeb dataset (~100M tokens)
- **Context Length**: 1024 tokens
- **Layers**: 6
- **Hidden Size**: 768
- **Attention Heads**: 12
## Training
- **Dataset**: FineWeb (web-crawled high-quality text)
- **Tokens Trained**: ~110M tokens
- **Training Time**: ~6 hours on RTX 3090
- **Optimizer**: AdamW
- **Learning Rate**: 1e-4
## Usage
```python
from transformers import AutoTokenizer, AutoModelForCausalLM
tokenizer = AutoTokenizer.from_pretrained("vishesh-t27/Nano-Llama")
model = AutoModelForCausalLM.from_pretrained("vishesh-t27/Nano-Llama")
model.eval()
# Test prompt
text = "The future of artificial intelligence is"
inputs = tokenizer(text, return_tensors="pt")
# Generate text
outputs = model.generate(
**inputs,
max_new_tokens=50,
temperature=0.8,
do_sample=True,
pad_token_id=tokenizer.eos_token_id
)
# Decode and print
generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
print(generated_text)
```
## Limitations
- Small model size (67M parameters)
- Limited training data compared to larger models
- May generate repetitive or nonsensical text
## License
MIT License