File size: 10,711 Bytes
56dab45 2e7d061 56dab45 2e79ccf 56dab45 2e7d061 56dab45 2e7d061 56dab45 2e7d061 56dab45 2e7d061 56dab45 2e7d061 56dab45 2e7d061 56dab45 2e7d061 56dab45 2e7d061 56dab45 2e79ccf 56dab45 2e7d061 56dab45 2e7d061 56dab45 2e7d061 56dab45 2e7d061 56dab45 2e7d061 56dab45 2e7d061 56dab45 2e7d061 56dab45 2e7d061 56dab45 2e7d061 56dab45 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 |
using UnityEngine;
using Unity.Sentis;
using UnityEngine.Video;
using UnityEngine.UI;
using Lays = Unity.Sentis.Layers;
using FF = Unity.Sentis.Functional;
/*
* Blaze Palm Inference
* ====================
*
* Basic inference script for blaze palm
*
* Put this script on the Main Camera
* Put palm_detection_lite.sentis in the Assets/StreamingAssets folder
* Create a RawImage of in the scene
* Put a link to that image in previewUI
* Put a video in Assets/StreamingAssets folder and put the name of it int videoName
* Or put a test image in inputImage
* Set inputType to appropriate input
*/
public class RunBlazePalm : MonoBehaviour
{
public ModelAsset asset;
//Drag a link to a raw image here:
public RawImage previewUI = null;
// Put your bounding box sprite image here
public Texture2D boundingBoxTexture;
public Sprite boundingBoxSprite;
// optional images for palm markers
public Sprite[] markerTextures;
public string videoName = "chatting.mp4";
//
public Texture2D inputImage;
public InputType inputType = InputType.Video;
//Resolution of preview image/video
Vector2Int resolution = new Vector2Int(640, 640);
WebCamTexture webcam;
VideoPlayer video;
const BackendType backend = BackendType.GPUCompute;
RenderTexture targetTexture;
public enum InputType { Image, Video, Webcam };
//Some adjustable parameters for the model
[SerializeField, Range(0, 1)] float iouThreshold = 0.5f;
[SerializeField, Range(0, 1)] float scoreThreshold = 0.5f;
const int maxOutputBoxes = 64;
IWorker worker;
//Holds image size
int size;
Model model;
//webcam device name:
const string deviceName = "";
bool closing = false;
TensorFloat anchors, centersToCorners;
public struct BoundingBox
{
public float centerX;
public float centerY;
public float width;
public float height;
}
void Start()
{
//(Note: if using a webcam on mobile get permissions here first)
targetTexture = new RenderTexture(resolution.x, resolution.y, 0);
previewUI.texture = targetTexture;
SetupInput();
SetupModel();
SetupEngine();
if (boundingBoxSprite == null)
{
boundingBoxSprite = Sprite.Create(boundingBoxTexture,
new Rect(0, 0, boundingBoxTexture.width, boundingBoxTexture.height),
new Vector2(boundingBoxTexture.width / 2, boundingBoxTexture.height / 2));
}
}
void SetupInput()
{
switch (inputType)
{
case InputType.Webcam:
{
webcam = new WebCamTexture(deviceName, resolution.x, resolution.y);
webcam.requestedFPS = 30;
webcam.Play();
break;
}
case InputType.Video:
{
video = gameObject.AddComponent<VideoPlayer>();//new VideoPlayer();
video.renderMode = VideoRenderMode.APIOnly;
video.source = VideoSource.Url;
video.url = Application.streamingAssetsPath + "/"+videoName;
video.isLooping = true;
video.Play();
break;
}
default:
{
Graphics.Blit(inputImage, targetTexture);
}
break;
}
}
void Update()
{
if (inputType == InputType.Webcam)
{
// Format video input
if (!webcam.didUpdateThisFrame) return;
var aspect1 = (float)webcam.width / webcam.height;
var aspect2 = (float)resolution.x / resolution.y;
var gap = aspect2 / aspect1;
var vflip = webcam.videoVerticallyMirrored;
var scale = new Vector2(gap, vflip ? -1 : 1);
var offset = new Vector2((1 - gap) / 2, vflip ? 1 : 0);
Graphics.Blit(webcam, targetTexture, scale, offset);
}
if (inputType == InputType.Video)
{
var aspect1 = (float)video.width / video.height;
var aspect2 = (float)resolution.x / resolution.y;
var gap = aspect2 / aspect1;
var vflip = false;
var scale = new Vector2(gap, vflip ? -1 : 1);
var offset = new Vector2((1 - gap) / 2, vflip ? 1 : 0);
Graphics.Blit(video.texture, targetTexture, scale, offset);
}
if (inputType == InputType.Image)
{
Graphics.Blit(inputImage, targetTexture);
}
if (Input.GetKeyDown(KeyCode.Escape))
{
closing = true;
Application.Quit();
}
if (Input.GetKeyDown(KeyCode.P))
{
previewUI.enabled = !previewUI.enabled;
}
}
void LateUpdate()
{
if (!closing)
{
RunInference(targetTexture);
}
}
float[] GetGridBoxCoords()
{
var offsets = new float[2016 * 4];
int n = 0;
AddGrid(offsets, 24, 2, 8, ref n);
AddGrid(offsets, 12, 6, 16, ref n);
return offsets;
}
void AddGrid(float[] offsets, int rows, int repeats, int cellWidth, ref int n)
{
for (int j = 0; j < repeats * rows * rows; j++)
{
offsets[n++] = cellWidth * ((j / repeats) % rows - (rows - 1) * 0.5f);
offsets[n++] = cellWidth * ((j / repeats / rows) - (rows - 1) * 0.5f);
n += 2;
}
}
void SetupModel()
{
float[] offsets = GetGridBoxCoords();
model = ModelLoader.Load(asset);
//model = ModelLoader.Load(Application.streamingAssetsPath + "/palm_detection_lite.sentis");
//We need to add extra layers to the model in order to aggregate the box predicions:
size = model.inputs[0].shape.ToTensorShape()[2]; // Input tensor width (192)
anchors = new TensorFloat(new TensorShape(offsets.Length / 4, 4), offsets);
centersToCorners = new TensorFloat(new TensorShape(4, 4),
new float[]
{
1, 0, 1, 0,
0, 1, 0, 1,
-0.5f, 0, 0.5f, 0,
0, -0.5f, 0, 0.5f
});
var model2 = Functional.Compile(
input =>
{
var outputs = model.Forward(input);
var regressors = outputs[1][0]; //shape=(2016,18)
var scores = outputs[0][0].Transpose(0, 1) - scoreThreshold; //shape=(1,2016)
var boxCoords = regressors[.., 0..4] + FunctionalTensor.FromTensor(anchors); //(2016,4)
var boxCorners = FF.MatMul(boxCoords, FunctionalTensor.FromTensor(centersToCorners));
var indices = FF.NMS(boxCoords, scores, iouThreshold); //shape=(N)
var indices2 = indices.Unsqueeze(-1).BroadcastTo(new int[] { 4 }); //shape=(N,4)
var output = FF.Gather(boxCoords, 0, indices2); //shape=(N,4)
var indices3 = indices.Unsqueeze(-1).BroadcastTo(new int[] { 18 }); //shape=(N,18)
var markersOutput = FF.Gather(regressors, 0, indices3); //shape=(N,18)
return (output, markersOutput);
},
InputDef.FromModel(model)[0]
);
worker = WorkerFactory.CreateWorker(backend, model2);
}
public void SetupEngine()
{
}
void DrawPalms(TensorFloat index3, TensorFloat regressors, int NMAX, Vector2 scale)
{
for (int n = 0; n < NMAX; n++)
{
//Draw bounding box of the palm
var box = new BoundingBox
{
centerX = index3[n, 0] * scale.x,
centerY = index3[n, 1] * scale.y,
width = index3[n, 2] * scale.x,
height = index3[n, 3] * scale.y
};
DrawBox(box, boundingBoxSprite);
if (regressors == null) continue;
//Draw markers starts of fingers
for (int j = 0; j < 7; j++)
{
var marker = new BoundingBox
{
centerX = box.centerX + (regressors[n, 4 + j * 2] - regressors[n, 0]) * scale.x,
centerY = box.centerY + (regressors[n, 4 + j * 2 + 1] - regressors[n, 1]) * scale.y,
width = 4f * scale.x,
height = 4f * scale.y,
};
DrawBox(marker, j < markerTextures.Length ? markerTextures[j] : boundingBoxSprite);
}
}
}
void RunInference(Texture source)
{
var transform = new TextureTransform();
transform.SetDimensions(size, size, 3);
transform.SetTensorLayout(0, 3, 1, 2);
using var image = TextureConverter.ToTensor(source, transform);
worker.Execute(image);
var output = worker.PeekOutput("output_0") as TensorFloat;
var markersOutput = worker.PeekOutput("output_1") as TensorFloat;
output.CompleteOperationsAndDownload();
markersOutput.CompleteOperationsAndDownload();
ClearAnnotations();
Vector2 markerScale = previewUI.rectTransform.rect.size / size;
DrawPalms(output, markersOutput, output.shape[0], markerScale);
}
public void DrawBox(BoundingBox box, Sprite sprite)
{
var panel = new GameObject("ObjectBox");
panel.AddComponent<CanvasRenderer>();
panel.AddComponent<Image>();
panel.transform.SetParent(previewUI.transform, false);
var img = panel.GetComponent<Image>();
img.color = Color.white;
img.sprite = sprite;
img.type = Image.Type.Sliced;
panel.transform.localPosition = new Vector3(box.centerX, -box.centerY);
RectTransform rt = panel.GetComponent<RectTransform>();
rt.sizeDelta = new Vector2(box.width, box.height);
}
public void ClearAnnotations()
{
foreach (Transform child in previewUI.transform)
{
Destroy(child.gameObject);
}
}
void CleanUp()
{
anchors?.Dispose();
centersToCorners?.Dispose();
closing = true;
if (webcam) Destroy(webcam);
if (video) Destroy(video);
RenderTexture.active = null;
targetTexture.Release();
worker?.Dispose();
worker = null;
}
void OnDestroy()
{
CleanUp();
}
}
|