import tensorflow as tf | |
from tensorflow import keras | |
import numpy as np | |
import matplotlib.pyplot as plt | |
from huggingface_hub import login | |
(x_train,y_train),(x_test,y_test) = tf.keras.datasets.mnist.load_data() | |
x_train,x_test = x_train/255.0,x_test/255.0 | |
import tensorflow as tf | |
from tensorflow import keras | |
model = keras.models.Sequential([ | |
keras.layers.Flatten(input_shape=(28,28)), | |
keras.layers.Dense(128,activation='relu'), | |
keras.layers.Dense(10,activation='softmax') | |
]) | |
model.compile(optimizer='adam',loss='sparse_categorical_crossentropy',metrics=['accuracy']) | |
model.fit(x_train,y_train,epochs=5) | |
model.save("mnist_model.keras") | |
login() |