turab31 commited on
Commit
338964a
·
verified ·
1 Parent(s): 59a0a73

Upload folder using huggingface_hub

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ mnist_model.keras filter=lfs diff=lfs merge=lfs -text
hello.py ADDED
@@ -0,0 +1,16 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import matplotlib.pyplot as plt
2
+
3
+ # Sample data
4
+ x = [1, 2, 3, 4, 5]
5
+ y = [2, 4, 6, 8, 10]
6
+
7
+ # Create a line plot
8
+ plt.plot(x, y)
9
+
10
+ # Add title and labels
11
+ plt.title('Simple Line Plot')
12
+ plt.xlabel('X-axis')
13
+ plt.ylabel('Y-axis')
14
+
15
+ # Show the plot
16
+ plt.show()
main.py ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import json
2
+
3
+
4
+ data ={'age':21,'name':'tmna'}
5
+
6
+ json_str = json.dumps(data)
7
+ print(json_str)
8
+ print(type(json_str))
9
+
10
+ parsed_str = json.loads(json_str)
11
+ print(parsed_str)
12
+ print(type(parsed_str))
13
+
mnist_model.keras ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4b047305752416c87e00cf0cf6eb684ab43b5ddd66538331ed537a85149f6d89
3
+ size 1244359
module/h.ipynb ADDED
@@ -0,0 +1,55 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cells": [
3
+ {
4
+ "cell_type": "markdown",
5
+ "id": "66977768",
6
+ "metadata": {},
7
+ "source": []
8
+ },
9
+ {
10
+ "cell_type": "markdown",
11
+ "id": "0ec40ac2",
12
+ "metadata": {},
13
+ "source": []
14
+ },
15
+ {
16
+ "cell_type": "code",
17
+ "execution_count": 1,
18
+ "id": "8082fa30",
19
+ "metadata": {},
20
+ "outputs": [
21
+ {
22
+ "name": "stdout",
23
+ "output_type": "stream",
24
+ "text": [
25
+ "hello\n"
26
+ ]
27
+ }
28
+ ],
29
+ "source": [
30
+ "print(\"hello\")"
31
+ ]
32
+ }
33
+ ],
34
+ "metadata": {
35
+ "kernelspec": {
36
+ "display_name": "Python 3",
37
+ "language": "python",
38
+ "name": "python3"
39
+ },
40
+ "language_info": {
41
+ "codemirror_mode": {
42
+ "name": "ipython",
43
+ "version": 3
44
+ },
45
+ "file_extension": ".py",
46
+ "mimetype": "text/x-python",
47
+ "name": "python",
48
+ "nbconvert_exporter": "python",
49
+ "pygments_lexer": "ipython3",
50
+ "version": "3.12.7"
51
+ }
52
+ },
53
+ "nbformat": 4,
54
+ "nbformat_minor": 5
55
+ }
module/hello.py ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ from package.main import *
2
+ print(add(2,9))
3
+
4
+ print(area(3))
module/package/__init__.py ADDED
@@ -0,0 +1 @@
 
 
1
+ #sample
module/package/__pycache__/__init__.cpython-312.pyc ADDED
Binary file (158 Bytes). View file
 
module/package/__pycache__/main.cpython-312.pyc ADDED
Binary file (401 Bytes). View file
 
module/package/main.py ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ def add(a,b):
2
+ return a+b
3
+
4
+ def area(r):
5
+ return 3.14*r*r
new.ipynb ADDED
@@ -0,0 +1,85 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cells": [
3
+ {
4
+ "cell_type": "code",
5
+ "execution_count": null,
6
+ "id": "7c1f714e",
7
+ "metadata": {},
8
+ "outputs": [],
9
+ "source": [
10
+ "import tensorflow as tf\n",
11
+ "from tensorflow import keras\n",
12
+ "\n",
13
+ "import numpy as np\n",
14
+ "import matplotlib.pyplot as plt\n",
15
+ "\n",
16
+ "\n",
17
+ "(x_train,y_train),(x_test,y_test) = tf.keras.datasets.mnist.load_data()\n",
18
+ "\n",
19
+ "x_train,x_test = x_train/255.0,x_test/255.0\n",
20
+ "\n",
21
+ "import tensorflow as tf\n",
22
+ "from tensorflow import keras\n",
23
+ "model = keras.models.Sequential([\n",
24
+ " keras.layers.Flatten(input_shape=(28,28)),\n",
25
+ " keras.layers.Dense(128,activation='relu'),\n",
26
+ " keras.layers.Dense(10,activation='softmax')\n",
27
+ " \n",
28
+ " \n",
29
+ "])\n",
30
+ "\n",
31
+ "model.compile(optimizer='adam',loss='sparse_categorical_crossentropy',metrics=['accuracy'])\n",
32
+ "model.fit(x_train,y_train,epochs=5)\n",
33
+ "\n",
34
+ "model.save(\"mnist_model.keras\")\n",
35
+ "\n",
36
+ "\n"
37
+ ]
38
+ },
39
+ {
40
+ "cell_type": "code",
41
+ "execution_count": null,
42
+ "id": "af40fe46",
43
+ "metadata": {},
44
+ "outputs": [],
45
+ "source": [
46
+ "from huggingface_hub import HfApi\n",
47
+ "repo_id=\"turab31/mnist-model\"\n",
48
+ "api = HfApi()\n",
49
+ "api.create_repo(repo_id=repo_id,exist_ok=True)"
50
+ ]
51
+ },
52
+ {
53
+ "cell_type": "code",
54
+ "execution_count": null,
55
+ "id": "2bec5662",
56
+ "metadata": {},
57
+ "outputs": [],
58
+ "source": [
59
+ "from huggingface_hub import upload_folder\n",
60
+ "upload_folder(folder_path=\"\",repo_id=repo_id,repo_type=\"model\")"
61
+ ]
62
+ }
63
+ ],
64
+ "metadata": {
65
+ "kernelspec": {
66
+ "display_name": "Python 3",
67
+ "language": "python",
68
+ "name": "python3"
69
+ },
70
+ "language_info": {
71
+ "codemirror_mode": {
72
+ "name": "ipython",
73
+ "version": 3
74
+ },
75
+ "file_extension": ".py",
76
+ "mimetype": "text/x-python",
77
+ "name": "python",
78
+ "nbconvert_exporter": "python",
79
+ "pygments_lexer": "ipython3",
80
+ "version": "3.12.7"
81
+ }
82
+ },
83
+ "nbformat": 4,
84
+ "nbformat_minor": 5
85
+ }
numpy/one.py ADDED
@@ -0,0 +1,17 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ a=np.array([[1,2,3],
3
+ [3,4,5]])
4
+ # print(a.shape)
5
+
6
+ a=np.array([1,2,3,4,15,89])
7
+ # # slicing from start
8
+ # print(a[:3])
9
+ # # alicing from end
10
+ # print(a[3:])
11
+
12
+ # print(np.zeros((6,3,4)))
13
+
14
+
15
+ arr = ([2,3,78,68])
16
+ # print(np.sort(arr))
17
+ print(np.argsort(arr))
o.ipynb ADDED
@@ -0,0 +1,314 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cells": [
3
+ {
4
+ "cell_type": "code",
5
+ "execution_count": null,
6
+ "id": "283a8867",
7
+ "metadata": {},
8
+ "outputs": [
9
+ {
10
+ "name": "stdout",
11
+ "output_type": "stream",
12
+ "text": [
13
+ "Downloading data from https://storage.googleapis.com/tensorflow/tf-keras-datasets/mnist.npz\n",
14
+ "\u001b[1m11490434/11490434\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 0us/step\n"
15
+ ]
16
+ },
17
+ {
18
+ "data": {
19
+ "text/plain": [
20
+ "array([[[0, 0, 0, ..., 0, 0, 0],\n",
21
+ " [0, 0, 0, ..., 0, 0, 0],\n",
22
+ " [0, 0, 0, ..., 0, 0, 0],\n",
23
+ " ...,\n",
24
+ " [0, 0, 0, ..., 0, 0, 0],\n",
25
+ " [0, 0, 0, ..., 0, 0, 0],\n",
26
+ " [0, 0, 0, ..., 0, 0, 0]],\n",
27
+ "\n",
28
+ " [[0, 0, 0, ..., 0, 0, 0],\n",
29
+ " [0, 0, 0, ..., 0, 0, 0],\n",
30
+ " [0, 0, 0, ..., 0, 0, 0],\n",
31
+ " ...,\n",
32
+ " [0, 0, 0, ..., 0, 0, 0],\n",
33
+ " [0, 0, 0, ..., 0, 0, 0],\n",
34
+ " [0, 0, 0, ..., 0, 0, 0]],\n",
35
+ "\n",
36
+ " [[0, 0, 0, ..., 0, 0, 0],\n",
37
+ " [0, 0, 0, ..., 0, 0, 0],\n",
38
+ " [0, 0, 0, ..., 0, 0, 0],\n",
39
+ " ...,\n",
40
+ " [0, 0, 0, ..., 0, 0, 0],\n",
41
+ " [0, 0, 0, ..., 0, 0, 0],\n",
42
+ " [0, 0, 0, ..., 0, 0, 0]],\n",
43
+ "\n",
44
+ " ...,\n",
45
+ "\n",
46
+ " [[0, 0, 0, ..., 0, 0, 0],\n",
47
+ " [0, 0, 0, ..., 0, 0, 0],\n",
48
+ " [0, 0, 0, ..., 0, 0, 0],\n",
49
+ " ...,\n",
50
+ " [0, 0, 0, ..., 0, 0, 0],\n",
51
+ " [0, 0, 0, ..., 0, 0, 0],\n",
52
+ " [0, 0, 0, ..., 0, 0, 0]],\n",
53
+ "\n",
54
+ " [[0, 0, 0, ..., 0, 0, 0],\n",
55
+ " [0, 0, 0, ..., 0, 0, 0],\n",
56
+ " [0, 0, 0, ..., 0, 0, 0],\n",
57
+ " ...,\n",
58
+ " [0, 0, 0, ..., 0, 0, 0],\n",
59
+ " [0, 0, 0, ..., 0, 0, 0],\n",
60
+ " [0, 0, 0, ..., 0, 0, 0]],\n",
61
+ "\n",
62
+ " [[0, 0, 0, ..., 0, 0, 0],\n",
63
+ " [0, 0, 0, ..., 0, 0, 0],\n",
64
+ " [0, 0, 0, ..., 0, 0, 0],\n",
65
+ " ...,\n",
66
+ " [0, 0, 0, ..., 0, 0, 0],\n",
67
+ " [0, 0, 0, ..., 0, 0, 0],\n",
68
+ " [0, 0, 0, ..., 0, 0, 0]]], dtype=uint8)"
69
+ ]
70
+ },
71
+ "execution_count": 1,
72
+ "metadata": {},
73
+ "output_type": "execute_result"
74
+ }
75
+ ],
76
+ "source": [
77
+ "import tensorflow as tf\n",
78
+ "from tensorflow import keras \n",
79
+ "import numpy as np\n",
80
+ "import matplotlib.pyplot as plt\n",
81
+ "\n",
82
+ "(x_train,y_train),(x_test,y_test) = tf.keras.datasets.mnist.load_data()\n",
83
+ "\n",
84
+ "x_train"
85
+ ]
86
+ },
87
+ {
88
+ "cell_type": "code",
89
+ "execution_count": 3,
90
+ "id": "c4566813",
91
+ "metadata": {},
92
+ "outputs": [
93
+ {
94
+ "data": {
95
+ "text/plain": [
96
+ "<matplotlib.image.AxesImage at 0x263602585f0>"
97
+ ]
98
+ },
99
+ "execution_count": 3,
100
+ "metadata": {},
101
+ "output_type": "execute_result"
102
+ },
103
+ {
104
+ "data": {
105
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAaAAAAGdCAYAAABU0qcqAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAGJ1JREFUeJzt3QuMFdX9B/CzqCyo7NIFYUEegs9GhaYWKVURCwG1MaKm0dam2BgIFk2V+gimio8mW21jjQ3VJm3dGp81LRpNSoIokLbgA0uIValQWrACVhN2eQhamH9mDPt3FdS77O5v997PJzm53Dtzdg6zs/O9Z+bcc6uyLMsSAHSyHp29QQDICSAAQgggAEIIIABCCCAAQgggAEIIIABCCCAAQhycupg9e/akt956K/Xp0ydVVVVFNweAEuXzG2zdujUNHjw49ejRo/sEUB4+Q4cOjW4GAAdow4YNaciQId3nElze8wGg+/us83mHBdC8efPSUUcdlXr16pXGjh2bXnjhhc9Vz2U3gPLwWefzDgmgxx57LM2ePTvNnTs3vfzyy2n06NFpypQp6e233+6IzQHQHWUd4NRTT81mzZrV8nz37t3Z4MGDs4aGhs+s29TUlM/OrSiKoqTuXfLz+adp9x7Q+++/n1asWJEmTZrU8lo+CiJ/vmzZsk+sv2vXrtTc3NyqAFD+2j2A3nnnnbR79+40cODAVq/nzzdt2vSJ9RsaGlJtbW1LMQIOoDKEj4KbM2dOampqain5sD0Ayl+7fw6of//+6aCDDkqbN29u9Xr+vL6+/hPrV1dXFwWAytLuPaCePXumU045JS1atKjV7Ab583HjxrX35gDopjpkJoR8CPa0adPSV77ylXTqqaemu+++O23fvj1973vf64jNAdANdUgAXXzxxem///1vuvnmm4uBB1/60pfSggULPjEwAYDKVZWPxU5dSD4MOx8NB0D3lg8sq6mp6bqj4ACoTAIIgBACCIAQAgiAEAIIgBACCIAQAgiAEAIIgBACCIAQAgiAEAIIgBACCIAQAgiAEAIIgBACCIAQAgiAEAIIgBACCIAQAgiAEAIIgBACCIAQAgiAEAIIgBACCIAQAgiAEAIIgBACCIAQAgiAEAIIgBACCIAQAgiAEAIIgBACCIAQAgiAEAIIgBACCIAQAgiAEAIIgBACCIAQAgiAEAIIgBACCIAQAgiAEAIIgBACCIAQAgiAEAIIgBACCIAQAgiAEAIIgBACCIAQAgiAEAfHbBagbSZOnFhynYceeqhN2zrzzDNLrrN69eo2basS6QEBEEIAAVAeAXTLLbekqqqqVuWEE05o780A0M11yD2gE088MT3zzDP/v5GD3WoCoLUOSYY8cOrr6zviRwNQJjrkHtAbb7yRBg8enEaOHJkuvfTStH79+v2uu2vXrtTc3NyqAFD+2j2Axo4dmxobG9OCBQvSvffem9atW5fOOOOMtHXr1n2u39DQkGpra1vK0KFD27tJAHRBVVmWZR25gS1btqThw4enu+66K11++eX77AHlZa+8BySEgP3xOaDuo6mpKdXU1Ox3eYePDujbt2867rjj0po1a/a5vLq6uigAVJYO/xzQtm3b0tq1a9OgQYM6elMAVHIAXXvttWnJkiXpX//6V/rrX/+aLrjggnTQQQelb33rW+29KQC6sXa/BPfmm28WYfPuu++mI444Ip1++ulp+fLlxb8BoMMC6NFHH23vH1kWxo8fX3Kdfv36lVxn/vz5JdeB7mTMmDEl13nxxRc7pC0cGHPBARBCAAEQQgABEEIAARBCAAEQQgABEEIAARBCAAEQQgABEEIAARBCAAEQQgABEKLDv5COD02YMKHkOscee2zJdUxGSnfSo0fp74FHjBhRcp38W5nboqqqqk31+Hz0gAAIIYAACCGAAAghgAAIIYAACCGAAAghgAAIIYAACCGAAAghgAAIIYAACCGAAAghgAAIYTbsTvLd73635DrLli3rkLZAVzFo0KCS60yfPr3kOg8++GBqi9dff71N9fh89IAACCGAAAghgAAIIYAACCGAAAghgAAIIYAACCGAAAghgAAIIYAACCGAAAghgAAIYTLSTtKjh6yHj/v1r3/dKdt54403OmU7lMZZEYAQAgiAEAIIgBACCIAQAgiAEAIIgBACCIAQAgiAEAIIgBACCIAQAgiAEAIIgBAmI22DUaNGlVxn4MCBHdIW6M5qa2s7ZTsLFy7slO1QGj0gAEIIIAC6RwAtXbo0nXfeeWnw4MGpqqoqPfHEE62WZ1mWbr755jRo0KDUu3fvNGnSJN/FAcCBB9D27dvT6NGj07x58/a5/M4770z33HNPuu+++9Lzzz+fDjvssDRlypS0c+fOUjcFQBkreRDCOeecU5R9yXs/d999d/rRj36Uzj///OK1Bx54oLgBn/eULrnkkgNvMQBloV3vAa1bty5t2rSpuOz20VEuY8eOTcuWLdtnnV27dqXm5uZWBYDy164BlIfPvoYc58/3Lvu4hoaGIqT2lqFDh7ZnkwDoosJHwc2ZMyc1NTW1lA0bNkQ3CYDuFkD19fXF4+bNm1u9nj/fu+zjqqurU01NTasCQPlr1wAaMWJEETSLFi1qeS2/p5OPhhs3blx7bgqAShsFt23btrRmzZpWAw9WrlyZ6urq0rBhw9LVV1+dfvzjH6djjz22CKSbbrqp+MzQ1KlT27vtAFRSAL300kvprLPOank+e/bs4nHatGmpsbExXX/99cVnhWbMmJG2bNmSTj/99LRgwYLUq1ev9m05AJUVQBMmTCg+77M/+ewIt912W1HK1bnnnltynXxWCChnbZlwN79K0hn+85//dMp26Gaj4ACoTAIIgBACCIAQAgiAEAIIgBACCIAQAgiAEAIIgBACCIAQAgiAEAIIgBACCIAQAgiA7jEbNikdf/zxnbKdv//9752yHWgPP/vZzzplBu1//OMfJdfZunVryXXoeHpAAIQQQACEEEAAhBBAAIQQQACEEEAAhBBAAIQQQACEEEAAhBBAAIQQQACEEEAAhDAZaRf24osvRjeBLqSmpqbkOmeffXabtvWd73yn5DqTJ09OneH2228vuc6WLVs6pC0cGD0gAEIIIABCCCAAQgggAEIIIABCCCAAQgggAEIIIABCCCAAQgggAEIIIABCCCAAQpiMtAurq6tL5Wb06NEl16mqqiq5zqRJk1JbDBkypOQ6PXv2LLnOpZdeWnKdHj1Kf7/43nvvpbZ4/vnnS66za9eukuscfHDpp6AVK1aUXIeuSQ8IgBACCIAQAgiAEAIIgBACCIAQAgiAEAIIgBACCIAQAgiAEAIIgBACCIAQAgiAECYjbYO2TPCYZVnJde67776S69x4442pKxs1alSnTEb6v//9L7XFjh07Sq7z6quvllznt7/9bcl1XnrppZLrLFmyJLXF5s2bS67z5ptvllynd+/eJdd5/fXXS65D16QHBEAIAQRA9wigpUuXpvPOOy8NHjy4uDTyxBNPtFp+2WWXFa9/tJx99tnt2WYAKjGAtm/fXnyp2Lx58/a7Th44GzdubCmPPPLIgbYTgEofhHDOOecU5dNUV1en+vr6A2kXAGWuQ+4BLV68OA0YMCAdf/zx6Yorrkjvvvvup36Nb3Nzc6sCQPlr9wDKL7898MADadGiRemOO+4ohoHmPabdu3fvc/2GhoZUW1vbUoYOHdreTQKgEj4HdMkll7T8++STTy4+93H00UcXvaKJEyd+Yv05c+ak2bNntzzPe0BCCKD8dfgw7JEjR6b+/funNWvW7Pd+UU1NTasCQPnr8ADKPx2d3wMaNGhQR28KgHK+BLdt27ZWvZl169allStXprq6uqLceuut6aKLLipGwa1duzZdf/316ZhjjklTpkxp77YDUEkBlM9HddZZZ7U833v/Ztq0aenee+9Nq1atSr/73e/Sli1big+rTp48Od1+++3FpTYA2Ksqa8ssmR0oH4SQj4YrNzfccEPJdb72ta91SFu6m4/PtvF5vPbaa23a1vLly9tUr9zMmDGjUybP/ec//1lynfyKCt1DU1PTp97XNxccACEEEAAhBBAAIQQQACEEEAAhBBAAIQQQACEEEAAhBBAAIQQQACEEEAAhBBAAIQQQAOXxldzs2x133BHdBPjcJk6c2Cnb+cMf/tAp26Fr0gMCIIQAAiCEAAIghAACIIQAAiCEAAIghAACIIQAAiCEAAIghAACIIQAAiCEAAIghMlIgTDz58+PbgKB9IAACCGAAAghgAAIIYAACCGAAAghgAAIIYAACCGAAAghgAAIIYAACCGAAAghgAAIIYAACCGAAAghgAAIIYAACCGAAAghgAAIIYAACCGAAAghgAAIIYAACCGAAAghgAAIIYAACHFwzGaBclNVVVVyneOOO67kOsuXLy+5Dl2THhAAIQQQAF0/gBoaGtKYMWNSnz590oABA9LUqVPT6tWrW62zc+fONGvWrNSvX790+OGHp4suuiht3ry5vdsNQCUF0JIlS4pwya/BLly4MH3wwQdp8uTJafv27S3rXHPNNempp55Kjz/+eLH+W2+9lS688MKOaDsAlTIIYcGCBa2eNzY2Fj2hFStWpPHjx6empqb0m9/8Jj388MPp61//erHO/fffn774xS8WofXVr361fVsPQGXeA8oDJ1dXV1c85kGU94omTZrUss4JJ5yQhg0blpYtW7bPn7Fr167U3NzcqgBQ/tocQHv27ElXX311Ou2009JJJ51UvLZp06bUs2fP1Ldv31brDhw4sFi2v/tKtbW1LWXo0KFtbRIAlRBA+b2gV155JT366KMH1IA5c+YUPam9ZcOGDQf08wAo4w+iXnnllenpp59OS5cuTUOGDGl5vb6+Pr3//vtpy5YtrXpB+Si4fNm+VFdXFwWAylJSDyjLsiJ85s+fn5599tk0YsSIVstPOeWUdMghh6RFixa1vJYP016/fn0aN25c+7UagMrqAeWX3fIRbk8++WTxWaC993Xyeze9e/cuHi+//PI0e/bsYmBCTU1Nuuqqq4rwMQIOgDYH0L333ls8TpgwodXr+VDryy67rPj3z3/+89SjR4/iA6j5CLcpU6akX/7yl6VsBoAKcHCpl+A+S69evdK8efOKAlSOz3N++Lj8zSqVy28fgBACCIAQAgiAEAIIgBACCIAQAgiAEAIIgBACCIAQAgiAEAIIgBACCIAQAgiAEAIIgO7zjagA7aEtX1TZ2NjYIW2h8+kBARBCAAEQQgABEEIAARBCAAEQQgABEEIAARBCAAEQQgABEEIAARBCAAEQQgABEMJkpEC7qKqqim4C3YweEAAhBBAAIQQQACEEEAAhBBAAIQQQACEEEAAhBBAAIQQQACEEEAAhBBAAIQQQACFMRgp8wp/+9KeS63zzm9/skLZQvvSAAAghgAAIIYAACCGAAAghgAAIIYAACCGAAAghgAAIIYAACCGAAAghgAAIIYAACFGVZVmWupDm5uZUW1sb3QwADlBTU1OqqanZ73I9IABCCCAAun4ANTQ0pDFjxqQ+ffqkAQMGpKlTp6bVq1e3WmfChAmpqqqqVZk5c2Z7txuASgqgJUuWpFmzZqXly5enhQsXpg8++CBNnjw5bd++vdV606dPTxs3bmwpd955Z3u3G4BK+kbUBQsWtHre2NhY9IRWrFiRxo8f3/L6oYcemurr69uvlQCUnR4HOsIhV1dX1+r1hx56KPXv3z+ddNJJac6cOWnHjh37/Rm7du0qRr59tABQAbI22r17d/aNb3wjO+2001q9/qtf/SpbsGBBtmrVquzBBx/MjjzyyOyCCy7Y78+ZO3duPgxcURRFSeVVmpqaPjVH2hxAM2fOzIYPH55t2LDhU9dbtGhR0ZA1a9bsc/nOnTuLRu4t+c+L3mmKoihK6vAAKuke0F5XXnllevrpp9PSpUvTkCFDPnXdsWPHFo9r1qxJRx999CeWV1dXFwWAylJSAOU9pquuuirNnz8/LV68OI0YMeIz66xcubJ4HDRoUNtbCUBlB1A+BPvhhx9OTz75ZPFZoE2bNhWv51Pn9O7dO61du7ZYfu6556Z+/fqlVatWpWuuuaYYITdq1KiO+j8A0B2Vct9nf9f57r///mL5+vXrs/Hjx2d1dXVZdXV1dswxx2TXXXfdZ14H/Kh83ejrloqiKEo64PJZ536TkQLQIUxGCkCXJIAACCGAAAghgAAIIYAACCGAAAghgAAIIYAACCGAAAghgAAIIYAACCGAAAghgAAIIYAACCGAAAghgAAIIYAACCGAAAghgAAIIYAACCGAAAghgAAIIYAACCGAAAghgAAI0eUCKMuy6CYA0Ann8y4XQFu3bo1uAgCdcD6vyrpYl2PPnj3prbfeSn369ElVVVWtljU3N6ehQ4emDRs2pJqamlSp7IcP2Q8fsh8+ZD90nf2Qx0oePoMHD049euy/n3Nw6mLyxg4ZMuRT18l3aiUfYHvZDx+yHz5kP3zIfuga+6G2tvYz1+lyl+AAqAwCCIAQ3SqAqqur09y5c4vHSmY/fMh++JD98CH7ofvthy43CAGAytCtekAAlA8BBEAIAQRACAEEQIhuE0Dz5s1LRx11VOrVq1caO3ZseuGFF1KlueWWW4rZIT5aTjjhhFTuli5dms4777ziU9X5//mJJ55otTwfR3PzzTenQYMGpd69e6dJkyalN954I1Xafrjssss+cXycffbZqZw0NDSkMWPGFDOlDBgwIE2dOjWtXr261To7d+5Ms2bNSv369UuHH354uuiii9LmzZtTpe2HCRMmfOJ4mDlzZupKukUAPfbYY2n27NnF0MKXX345jR49Ok2ZMiW9/fbbqdKceOKJaePGjS3lz3/+cyp327dvL37n+ZuQfbnzzjvTPffck+677770/PPPp8MOO6w4PvITUSXth1weOB89Ph555JFUTpYsWVKEy/Lly9PChQvTBx98kCZPnlzsm72uueaa9NRTT6XHH3+8WD+f2uvCCy9MlbYfctOnT291POR/K11K1g2ceuqp2axZs1qe7969Oxs8eHDW0NCQVZK5c+dmo0ePzipZfsjOnz+/5fmePXuy+vr67Kc//WnLa1u2bMmqq6uzRx55JKuU/ZCbNm1adv7552eV5O233y72xZIlS1p+94ccckj2+OOPt6zz2muvFessW7Ysq5T9kDvzzDOzH/zgB1lX1uV7QO+//35asWJFcVnlo/PF5c+XLVuWKk1+aSm/BDNy5Mh06aWXpvXr16dKtm7durRp06ZWx0c+B1V+mbYSj4/FixcXl2SOP/74dMUVV6R33303lbOmpqbisa6urnjMzxV5b+Cjx0N+mXrYsGFlfTw0fWw/7PXQQw+l/v37p5NOOinNmTMn7dixI3UlXW4y0o9755130u7du9PAgQNbvZ4/f/3111MlyU+qjY2Nxckl707feuut6YwzzkivvPJKcS24EuXhk9vX8bF3WaXIL7/ll5pGjBiR1q5dm2688cZ0zjnnFCfegw46KJWbfOb8q6++Op122mnFCTaX/8579uyZ+vbtWzHHw5597Ifct7/97TR8+PDiDeuqVavSDTfcUNwn+uMf/5i6ii4fQPy//GSy16hRo4pAyg+w3//+9+nyyy8PbRvxLrnkkpZ/n3zyycUxcvTRRxe9ookTJ6Zyk98Dyd98VcJ90LbshxkzZrQ6HvJBOvlxkL85yY+LrqDLX4LLu4/5u7ePj2LJn9fX16dKlr/LO+6449KaNWtSpdp7DDg+Pim/TJv//ZTj8XHllVemp59+Oj333HOtvr4l/53nl+23bNlSEcfDlfvZD/uSv2HNdaXjocsHUN6dPuWUU9KiRYtadTnz5+PGjUuVbNu2bcW7mfydTaXKLzflJ5aPHh/5F3Llo+Eq/fh48803i3tA5XR85OMv8pPu/Pnz07PPPlv8/j8qP1cccsghrY6H/LJTfq+0nI6H7DP2w76sXLmyeOxSx0PWDTz66KPFqKbGxsbs1VdfzWbMmJH17ds327RpU1ZJfvjDH2aLFy/O1q1bl/3lL3/JJk2alPXv378YAVPOtm7dmv3tb38rSn7I3nXXXcW///3vfxfLf/KTnxTHw5NPPpmtWrWqGAk2YsSI7L333ssqZT/ky6699tpipFd+fDzzzDPZl7/85ezYY4/Ndu7cmZWLK664IqutrS3+DjZu3NhSduzY0bLOzJkzs2HDhmXPPvts9tJLL2Xjxo0rSjm54jP2w5o1a7Lbbrut+P/nx0P+tzFy5Mhs/PjxWVfSLQIo94tf/KI4qHr27FkMy16+fHlWaS6++OJs0KBBxT448sgji+f5gVbunnvuueKE+/GSDzveOxT7pptuygYOHFi8UZk4cWK2evXqrJL2Q37imTx5cnbEEUcUw5CHDx+eTZ8+vezepO3r/5+X+++/v2Wd/I3H97///ewLX/hCduihh2YXXHBBcXKupP2wfv36Imzq6uqKv4ljjjkmu+6667KmpqasK/F1DACE6PL3gAAoTwIIgBACCIAQAgiAEAIIgBACCIAQAgiAEAIIgBACCIAQAgiAEAIIgBACCIAU4f8ASTxL6JoQBngAAAAASUVORK5CYII=",
106
+ "text/plain": [
107
+ "<Figure size 640x480 with 1 Axes>"
108
+ ]
109
+ },
110
+ "metadata": {},
111
+ "output_type": "display_data"
112
+ }
113
+ ],
114
+ "source": [
115
+ "plt.imshow(x_train[2],cmap='gray')"
116
+ ]
117
+ },
118
+ {
119
+ "cell_type": "code",
120
+ "execution_count": 4,
121
+ "id": "a2893d80",
122
+ "metadata": {},
123
+ "outputs": [
124
+ {
125
+ "data": {
126
+ "text/plain": [
127
+ "array([[[0., 0., 0., ..., 0., 0., 0.],\n",
128
+ " [0., 0., 0., ..., 0., 0., 0.],\n",
129
+ " [0., 0., 0., ..., 0., 0., 0.],\n",
130
+ " ...,\n",
131
+ " [0., 0., 0., ..., 0., 0., 0.],\n",
132
+ " [0., 0., 0., ..., 0., 0., 0.],\n",
133
+ " [0., 0., 0., ..., 0., 0., 0.]],\n",
134
+ "\n",
135
+ " [[0., 0., 0., ..., 0., 0., 0.],\n",
136
+ " [0., 0., 0., ..., 0., 0., 0.],\n",
137
+ " [0., 0., 0., ..., 0., 0., 0.],\n",
138
+ " ...,\n",
139
+ " [0., 0., 0., ..., 0., 0., 0.],\n",
140
+ " [0., 0., 0., ..., 0., 0., 0.],\n",
141
+ " [0., 0., 0., ..., 0., 0., 0.]],\n",
142
+ "\n",
143
+ " [[0., 0., 0., ..., 0., 0., 0.],\n",
144
+ " [0., 0., 0., ..., 0., 0., 0.],\n",
145
+ " [0., 0., 0., ..., 0., 0., 0.],\n",
146
+ " ...,\n",
147
+ " [0., 0., 0., ..., 0., 0., 0.],\n",
148
+ " [0., 0., 0., ..., 0., 0., 0.],\n",
149
+ " [0., 0., 0., ..., 0., 0., 0.]],\n",
150
+ "\n",
151
+ " ...,\n",
152
+ "\n",
153
+ " [[0., 0., 0., ..., 0., 0., 0.],\n",
154
+ " [0., 0., 0., ..., 0., 0., 0.],\n",
155
+ " [0., 0., 0., ..., 0., 0., 0.],\n",
156
+ " ...,\n",
157
+ " [0., 0., 0., ..., 0., 0., 0.],\n",
158
+ " [0., 0., 0., ..., 0., 0., 0.],\n",
159
+ " [0., 0., 0., ..., 0., 0., 0.]],\n",
160
+ "\n",
161
+ " [[0., 0., 0., ..., 0., 0., 0.],\n",
162
+ " [0., 0., 0., ..., 0., 0., 0.],\n",
163
+ " [0., 0., 0., ..., 0., 0., 0.],\n",
164
+ " ...,\n",
165
+ " [0., 0., 0., ..., 0., 0., 0.],\n",
166
+ " [0., 0., 0., ..., 0., 0., 0.],\n",
167
+ " [0., 0., 0., ..., 0., 0., 0.]],\n",
168
+ "\n",
169
+ " [[0., 0., 0., ..., 0., 0., 0.],\n",
170
+ " [0., 0., 0., ..., 0., 0., 0.],\n",
171
+ " [0., 0., 0., ..., 0., 0., 0.],\n",
172
+ " ...,\n",
173
+ " [0., 0., 0., ..., 0., 0., 0.],\n",
174
+ " [0., 0., 0., ..., 0., 0., 0.],\n",
175
+ " [0., 0., 0., ..., 0., 0., 0.]]])"
176
+ ]
177
+ },
178
+ "execution_count": 4,
179
+ "metadata": {},
180
+ "output_type": "execute_result"
181
+ }
182
+ ],
183
+ "source": [
184
+ "x_train,x_test=x_train/255.0,x_test/255.0\n",
185
+ "x_train"
186
+ ]
187
+ },
188
+ {
189
+ "cell_type": "code",
190
+ "execution_count": 3,
191
+ "id": "9d3b090a",
192
+ "metadata": {},
193
+ "outputs": [
194
+ {
195
+ "name": "stderr",
196
+ "output_type": "stream",
197
+ "text": [
198
+ "c:\\Users\\najaf\\AppData\\Local\\Programs\\Python\\Python312\\Lib\\site-packages\\keras\\src\\layers\\reshaping\\flatten.py:37: UserWarning: Do not pass an `input_shape`/`input_dim` argument to a layer. When using Sequential models, prefer using an `Input(shape)` object as the first layer in the model instead.\n",
199
+ " super().__init__(**kwargs)\n"
200
+ ]
201
+ },
202
+ {
203
+ "ename": "NameError",
204
+ "evalue": "name 'x_train' is not defined",
205
+ "output_type": "error",
206
+ "traceback": [
207
+ "\u001b[31m---------------------------------------------------------------------------\u001b[39m",
208
+ "\u001b[31mNameError\u001b[39m Traceback (most recent call last)",
209
+ "\u001b[36mCell\u001b[39m\u001b[36m \u001b[39m\u001b[32mIn[3]\u001b[39m\u001b[32m, line 11\u001b[39m\n\u001b[32m 3\u001b[39m model = keras.models.Sequential([\n\u001b[32m 4\u001b[39m keras.layers.Flatten(input_shape=(\u001b[32m28\u001b[39m,\u001b[32m28\u001b[39m)),\n\u001b[32m 5\u001b[39m keras.layers.Dense(\u001b[32m128\u001b[39m,activation=\u001b[33m'\u001b[39m\u001b[33mrelu\u001b[39m\u001b[33m'\u001b[39m),\n\u001b[32m (...)\u001b[39m\u001b[32m 8\u001b[39m \n\u001b[32m 9\u001b[39m ])\n\u001b[32m 10\u001b[39m model.compile(optimizer=\u001b[33m'\u001b[39m\u001b[33madam\u001b[39m\u001b[33m'\u001b[39m,loss=\u001b[33m'\u001b[39m\u001b[33msparse_categorical_crossentropy\u001b[39m\u001b[33m'\u001b[39m,metrics=[\u001b[33m'\u001b[39m\u001b[33maccuracy\u001b[39m\u001b[33m'\u001b[39m])\n\u001b[32m---> \u001b[39m\u001b[32m11\u001b[39m model.fit(\u001b[43mx_train\u001b[49m,y_train,epochs=\u001b[32m5\u001b[39m)\n",
210
+ "\u001b[31mNameError\u001b[39m: name 'x_train' is not defined"
211
+ ]
212
+ }
213
+ ],
214
+ "source": [
215
+ "import tensorflow as tf\n",
216
+ "from tensorflow import keras\n",
217
+ "model = keras.models.Sequential([\n",
218
+ " keras.layers.Flatten(input_shape=(28,28)),\n",
219
+ " keras.layers.Dense(128,activation='relu'),\n",
220
+ " keras.layers.Dense(10,activation='softmax')\n",
221
+ " \n",
222
+ " \n",
223
+ "])\n",
224
+ "model.compile(optimizer='adam',loss='sparse_categorical_crossentropy',metrics=['accuracy'])\n",
225
+ "model.fit(x_train,y_train,epochs=5)"
226
+ ]
227
+ },
228
+ {
229
+ "cell_type": "code",
230
+ "execution_count": 2,
231
+ "id": "dd5b05dd",
232
+ "metadata": {},
233
+ "outputs": [
234
+ {
235
+ "ename": "NameError",
236
+ "evalue": "name 'model' is not defined",
237
+ "output_type": "error",
238
+ "traceback": [
239
+ "\u001b[31m---------------------------------------------------------------------------\u001b[39m",
240
+ "\u001b[31mNameError\u001b[39m Traceback (most recent call last)",
241
+ "\u001b[36mCell\u001b[39m\u001b[36m \u001b[39m\u001b[32mIn[2]\u001b[39m\u001b[32m, line 1\u001b[39m\n\u001b[32m----> \u001b[39m\u001b[32m1\u001b[39m \u001b[43mmodel\u001b[49m.fit(x_train,y_train,epochs=\u001b[32m5\u001b[39m)\n",
242
+ "\u001b[31mNameError\u001b[39m: name 'model' is not defined"
243
+ ]
244
+ }
245
+ ],
246
+ "source": [
247
+ "model.fit(x_train,y_train,epochs=5)"
248
+ ]
249
+ },
250
+ {
251
+ "cell_type": "code",
252
+ "execution_count": null,
253
+ "id": "6a8d6734",
254
+ "metadata": {},
255
+ "outputs": [
256
+ {
257
+ "name": "stdout",
258
+ "output_type": "stream",
259
+ "text": [
260
+ "\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 2ms/step - accuracy: 0.9685 - loss: 0.1016\n",
261
+ "{test_accuracy*100:.2f}%\n"
262
+ ]
263
+ }
264
+ ],
265
+ "source": [
266
+ "test_loss,test_accuracy = model.evaluate(x_test,y_test)\n",
267
+ "print('{test_accuracy*100:.2f}%')\n"
268
+ ]
269
+ },
270
+ {
271
+ "cell_type": "code",
272
+ "execution_count": 1,
273
+ "id": "a7179f4e",
274
+ "metadata": {},
275
+ "outputs": [
276
+ {
277
+ "ename": "NameError",
278
+ "evalue": "name 'model' is not defined",
279
+ "output_type": "error",
280
+ "traceback": [
281
+ "\u001b[31m---------------------------------------------------------------------------\u001b[39m",
282
+ "\u001b[31mNameError\u001b[39m Traceback (most recent call last)",
283
+ "\u001b[36mCell\u001b[39m\u001b[36m \u001b[39m\u001b[32mIn[1]\u001b[39m\u001b[32m, line 1\u001b[39m\n\u001b[32m----> \u001b[39m\u001b[32m1\u001b[39m \u001b[43mmodel\u001b[49m.fit(x_train,y_train,epochs=\u001b[33m'\u001b[39m\u001b[33m5\u001b[39m\u001b[33m'\u001b[39m)\n",
284
+ "\u001b[31mNameError\u001b[39m: name 'model' is not defined"
285
+ ]
286
+ }
287
+ ],
288
+ "source": [
289
+ "model.fit(x_train,y_train,epochs='5')"
290
+ ]
291
+ }
292
+ ],
293
+ "metadata": {
294
+ "kernelspec": {
295
+ "display_name": "Python 3",
296
+ "language": "python",
297
+ "name": "python3"
298
+ },
299
+ "language_info": {
300
+ "codemirror_mode": {
301
+ "name": "ipython",
302
+ "version": 3
303
+ },
304
+ "file_extension": ".py",
305
+ "mimetype": "text/x-python",
306
+ "name": "python",
307
+ "nbconvert_exporter": "python",
308
+ "pygments_lexer": "ipython3",
309
+ "version": "3.12.7"
310
+ }
311
+ },
312
+ "nbformat": 4,
313
+ "nbformat_minor": 5
314
+ }
one.py ADDED
@@ -0,0 +1,27 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import tensorflow as tf
2
+ from tensorflow import keras
3
+
4
+ import numpy as np
5
+ import matplotlib.pyplot as plt
6
+ from huggingface_hub import login
7
+
8
+ (x_train,y_train),(x_test,y_test) = tf.keras.datasets.mnist.load_data()
9
+
10
+ x_train,x_test = x_train/255.0,x_test/255.0
11
+
12
+ import tensorflow as tf
13
+ from tensorflow import keras
14
+ model = keras.models.Sequential([
15
+ keras.layers.Flatten(input_shape=(28,28)),
16
+ keras.layers.Dense(128,activation='relu'),
17
+ keras.layers.Dense(10,activation='softmax')
18
+
19
+
20
+ ])
21
+
22
+ model.compile(optimizer='adam',loss='sparse_categorical_crossentropy',metrics=['accuracy'])
23
+ model.fit(x_train,y_train,epochs=5)
24
+
25
+ model.save("mnist_model.keras")
26
+
27
+ login()
txt ADDED
File without changes