Upload folder using huggingface_hub
Browse files- .gitattributes +1 -0
- hello.py +16 -0
- main.py +13 -0
- mnist_model.keras +3 -0
- module/h.ipynb +55 -0
- module/hello.py +4 -0
- module/package/__init__.py +1 -0
- module/package/__pycache__/__init__.cpython-312.pyc +0 -0
- module/package/__pycache__/main.cpython-312.pyc +0 -0
- module/package/main.py +5 -0
- new.ipynb +85 -0
- numpy/one.py +17 -0
- o.ipynb +314 -0
- one.py +27 -0
- txt +0 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
mnist_model.keras filter=lfs diff=lfs merge=lfs -text
|
hello.py
ADDED
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import matplotlib.pyplot as plt
|
2 |
+
|
3 |
+
# Sample data
|
4 |
+
x = [1, 2, 3, 4, 5]
|
5 |
+
y = [2, 4, 6, 8, 10]
|
6 |
+
|
7 |
+
# Create a line plot
|
8 |
+
plt.plot(x, y)
|
9 |
+
|
10 |
+
# Add title and labels
|
11 |
+
plt.title('Simple Line Plot')
|
12 |
+
plt.xlabel('X-axis')
|
13 |
+
plt.ylabel('Y-axis')
|
14 |
+
|
15 |
+
# Show the plot
|
16 |
+
plt.show()
|
main.py
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json
|
2 |
+
|
3 |
+
|
4 |
+
data ={'age':21,'name':'tmna'}
|
5 |
+
|
6 |
+
json_str = json.dumps(data)
|
7 |
+
print(json_str)
|
8 |
+
print(type(json_str))
|
9 |
+
|
10 |
+
parsed_str = json.loads(json_str)
|
11 |
+
print(parsed_str)
|
12 |
+
print(type(parsed_str))
|
13 |
+
|
mnist_model.keras
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4b047305752416c87e00cf0cf6eb684ab43b5ddd66538331ed537a85149f6d89
|
3 |
+
size 1244359
|
module/h.ipynb
ADDED
@@ -0,0 +1,55 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "markdown",
|
5 |
+
"id": "66977768",
|
6 |
+
"metadata": {},
|
7 |
+
"source": []
|
8 |
+
},
|
9 |
+
{
|
10 |
+
"cell_type": "markdown",
|
11 |
+
"id": "0ec40ac2",
|
12 |
+
"metadata": {},
|
13 |
+
"source": []
|
14 |
+
},
|
15 |
+
{
|
16 |
+
"cell_type": "code",
|
17 |
+
"execution_count": 1,
|
18 |
+
"id": "8082fa30",
|
19 |
+
"metadata": {},
|
20 |
+
"outputs": [
|
21 |
+
{
|
22 |
+
"name": "stdout",
|
23 |
+
"output_type": "stream",
|
24 |
+
"text": [
|
25 |
+
"hello\n"
|
26 |
+
]
|
27 |
+
}
|
28 |
+
],
|
29 |
+
"source": [
|
30 |
+
"print(\"hello\")"
|
31 |
+
]
|
32 |
+
}
|
33 |
+
],
|
34 |
+
"metadata": {
|
35 |
+
"kernelspec": {
|
36 |
+
"display_name": "Python 3",
|
37 |
+
"language": "python",
|
38 |
+
"name": "python3"
|
39 |
+
},
|
40 |
+
"language_info": {
|
41 |
+
"codemirror_mode": {
|
42 |
+
"name": "ipython",
|
43 |
+
"version": 3
|
44 |
+
},
|
45 |
+
"file_extension": ".py",
|
46 |
+
"mimetype": "text/x-python",
|
47 |
+
"name": "python",
|
48 |
+
"nbconvert_exporter": "python",
|
49 |
+
"pygments_lexer": "ipython3",
|
50 |
+
"version": "3.12.7"
|
51 |
+
}
|
52 |
+
},
|
53 |
+
"nbformat": 4,
|
54 |
+
"nbformat_minor": 5
|
55 |
+
}
|
module/hello.py
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from package.main import *
|
2 |
+
print(add(2,9))
|
3 |
+
|
4 |
+
print(area(3))
|
module/package/__init__.py
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
#sample
|
module/package/__pycache__/__init__.cpython-312.pyc
ADDED
Binary file (158 Bytes). View file
|
|
module/package/__pycache__/main.cpython-312.pyc
ADDED
Binary file (401 Bytes). View file
|
|
module/package/main.py
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
def add(a,b):
|
2 |
+
return a+b
|
3 |
+
|
4 |
+
def area(r):
|
5 |
+
return 3.14*r*r
|
new.ipynb
ADDED
@@ -0,0 +1,85 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": null,
|
6 |
+
"id": "7c1f714e",
|
7 |
+
"metadata": {},
|
8 |
+
"outputs": [],
|
9 |
+
"source": [
|
10 |
+
"import tensorflow as tf\n",
|
11 |
+
"from tensorflow import keras\n",
|
12 |
+
"\n",
|
13 |
+
"import numpy as np\n",
|
14 |
+
"import matplotlib.pyplot as plt\n",
|
15 |
+
"\n",
|
16 |
+
"\n",
|
17 |
+
"(x_train,y_train),(x_test,y_test) = tf.keras.datasets.mnist.load_data()\n",
|
18 |
+
"\n",
|
19 |
+
"x_train,x_test = x_train/255.0,x_test/255.0\n",
|
20 |
+
"\n",
|
21 |
+
"import tensorflow as tf\n",
|
22 |
+
"from tensorflow import keras\n",
|
23 |
+
"model = keras.models.Sequential([\n",
|
24 |
+
" keras.layers.Flatten(input_shape=(28,28)),\n",
|
25 |
+
" keras.layers.Dense(128,activation='relu'),\n",
|
26 |
+
" keras.layers.Dense(10,activation='softmax')\n",
|
27 |
+
" \n",
|
28 |
+
" \n",
|
29 |
+
"])\n",
|
30 |
+
"\n",
|
31 |
+
"model.compile(optimizer='adam',loss='sparse_categorical_crossentropy',metrics=['accuracy'])\n",
|
32 |
+
"model.fit(x_train,y_train,epochs=5)\n",
|
33 |
+
"\n",
|
34 |
+
"model.save(\"mnist_model.keras\")\n",
|
35 |
+
"\n",
|
36 |
+
"\n"
|
37 |
+
]
|
38 |
+
},
|
39 |
+
{
|
40 |
+
"cell_type": "code",
|
41 |
+
"execution_count": null,
|
42 |
+
"id": "af40fe46",
|
43 |
+
"metadata": {},
|
44 |
+
"outputs": [],
|
45 |
+
"source": [
|
46 |
+
"from huggingface_hub import HfApi\n",
|
47 |
+
"repo_id=\"turab31/mnist-model\"\n",
|
48 |
+
"api = HfApi()\n",
|
49 |
+
"api.create_repo(repo_id=repo_id,exist_ok=True)"
|
50 |
+
]
|
51 |
+
},
|
52 |
+
{
|
53 |
+
"cell_type": "code",
|
54 |
+
"execution_count": null,
|
55 |
+
"id": "2bec5662",
|
56 |
+
"metadata": {},
|
57 |
+
"outputs": [],
|
58 |
+
"source": [
|
59 |
+
"from huggingface_hub import upload_folder\n",
|
60 |
+
"upload_folder(folder_path=\"\",repo_id=repo_id,repo_type=\"model\")"
|
61 |
+
]
|
62 |
+
}
|
63 |
+
],
|
64 |
+
"metadata": {
|
65 |
+
"kernelspec": {
|
66 |
+
"display_name": "Python 3",
|
67 |
+
"language": "python",
|
68 |
+
"name": "python3"
|
69 |
+
},
|
70 |
+
"language_info": {
|
71 |
+
"codemirror_mode": {
|
72 |
+
"name": "ipython",
|
73 |
+
"version": 3
|
74 |
+
},
|
75 |
+
"file_extension": ".py",
|
76 |
+
"mimetype": "text/x-python",
|
77 |
+
"name": "python",
|
78 |
+
"nbconvert_exporter": "python",
|
79 |
+
"pygments_lexer": "ipython3",
|
80 |
+
"version": "3.12.7"
|
81 |
+
}
|
82 |
+
},
|
83 |
+
"nbformat": 4,
|
84 |
+
"nbformat_minor": 5
|
85 |
+
}
|
numpy/one.py
ADDED
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
a=np.array([[1,2,3],
|
3 |
+
[3,4,5]])
|
4 |
+
# print(a.shape)
|
5 |
+
|
6 |
+
a=np.array([1,2,3,4,15,89])
|
7 |
+
# # slicing from start
|
8 |
+
# print(a[:3])
|
9 |
+
# # alicing from end
|
10 |
+
# print(a[3:])
|
11 |
+
|
12 |
+
# print(np.zeros((6,3,4)))
|
13 |
+
|
14 |
+
|
15 |
+
arr = ([2,3,78,68])
|
16 |
+
# print(np.sort(arr))
|
17 |
+
print(np.argsort(arr))
|
o.ipynb
ADDED
@@ -0,0 +1,314 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": null,
|
6 |
+
"id": "283a8867",
|
7 |
+
"metadata": {},
|
8 |
+
"outputs": [
|
9 |
+
{
|
10 |
+
"name": "stdout",
|
11 |
+
"output_type": "stream",
|
12 |
+
"text": [
|
13 |
+
"Downloading data from https://storage.googleapis.com/tensorflow/tf-keras-datasets/mnist.npz\n",
|
14 |
+
"\u001b[1m11490434/11490434\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 0us/step\n"
|
15 |
+
]
|
16 |
+
},
|
17 |
+
{
|
18 |
+
"data": {
|
19 |
+
"text/plain": [
|
20 |
+
"array([[[0, 0, 0, ..., 0, 0, 0],\n",
|
21 |
+
" [0, 0, 0, ..., 0, 0, 0],\n",
|
22 |
+
" [0, 0, 0, ..., 0, 0, 0],\n",
|
23 |
+
" ...,\n",
|
24 |
+
" [0, 0, 0, ..., 0, 0, 0],\n",
|
25 |
+
" [0, 0, 0, ..., 0, 0, 0],\n",
|
26 |
+
" [0, 0, 0, ..., 0, 0, 0]],\n",
|
27 |
+
"\n",
|
28 |
+
" [[0, 0, 0, ..., 0, 0, 0],\n",
|
29 |
+
" [0, 0, 0, ..., 0, 0, 0],\n",
|
30 |
+
" [0, 0, 0, ..., 0, 0, 0],\n",
|
31 |
+
" ...,\n",
|
32 |
+
" [0, 0, 0, ..., 0, 0, 0],\n",
|
33 |
+
" [0, 0, 0, ..., 0, 0, 0],\n",
|
34 |
+
" [0, 0, 0, ..., 0, 0, 0]],\n",
|
35 |
+
"\n",
|
36 |
+
" [[0, 0, 0, ..., 0, 0, 0],\n",
|
37 |
+
" [0, 0, 0, ..., 0, 0, 0],\n",
|
38 |
+
" [0, 0, 0, ..., 0, 0, 0],\n",
|
39 |
+
" ...,\n",
|
40 |
+
" [0, 0, 0, ..., 0, 0, 0],\n",
|
41 |
+
" [0, 0, 0, ..., 0, 0, 0],\n",
|
42 |
+
" [0, 0, 0, ..., 0, 0, 0]],\n",
|
43 |
+
"\n",
|
44 |
+
" ...,\n",
|
45 |
+
"\n",
|
46 |
+
" [[0, 0, 0, ..., 0, 0, 0],\n",
|
47 |
+
" [0, 0, 0, ..., 0, 0, 0],\n",
|
48 |
+
" [0, 0, 0, ..., 0, 0, 0],\n",
|
49 |
+
" ...,\n",
|
50 |
+
" [0, 0, 0, ..., 0, 0, 0],\n",
|
51 |
+
" [0, 0, 0, ..., 0, 0, 0],\n",
|
52 |
+
" [0, 0, 0, ..., 0, 0, 0]],\n",
|
53 |
+
"\n",
|
54 |
+
" [[0, 0, 0, ..., 0, 0, 0],\n",
|
55 |
+
" [0, 0, 0, ..., 0, 0, 0],\n",
|
56 |
+
" [0, 0, 0, ..., 0, 0, 0],\n",
|
57 |
+
" ...,\n",
|
58 |
+
" [0, 0, 0, ..., 0, 0, 0],\n",
|
59 |
+
" [0, 0, 0, ..., 0, 0, 0],\n",
|
60 |
+
" [0, 0, 0, ..., 0, 0, 0]],\n",
|
61 |
+
"\n",
|
62 |
+
" [[0, 0, 0, ..., 0, 0, 0],\n",
|
63 |
+
" [0, 0, 0, ..., 0, 0, 0],\n",
|
64 |
+
" [0, 0, 0, ..., 0, 0, 0],\n",
|
65 |
+
" ...,\n",
|
66 |
+
" [0, 0, 0, ..., 0, 0, 0],\n",
|
67 |
+
" [0, 0, 0, ..., 0, 0, 0],\n",
|
68 |
+
" [0, 0, 0, ..., 0, 0, 0]]], dtype=uint8)"
|
69 |
+
]
|
70 |
+
},
|
71 |
+
"execution_count": 1,
|
72 |
+
"metadata": {},
|
73 |
+
"output_type": "execute_result"
|
74 |
+
}
|
75 |
+
],
|
76 |
+
"source": [
|
77 |
+
"import tensorflow as tf\n",
|
78 |
+
"from tensorflow import keras \n",
|
79 |
+
"import numpy as np\n",
|
80 |
+
"import matplotlib.pyplot as plt\n",
|
81 |
+
"\n",
|
82 |
+
"(x_train,y_train),(x_test,y_test) = tf.keras.datasets.mnist.load_data()\n",
|
83 |
+
"\n",
|
84 |
+
"x_train"
|
85 |
+
]
|
86 |
+
},
|
87 |
+
{
|
88 |
+
"cell_type": "code",
|
89 |
+
"execution_count": 3,
|
90 |
+
"id": "c4566813",
|
91 |
+
"metadata": {},
|
92 |
+
"outputs": [
|
93 |
+
{
|
94 |
+
"data": {
|
95 |
+
"text/plain": [
|
96 |
+
"<matplotlib.image.AxesImage at 0x263602585f0>"
|
97 |
+
]
|
98 |
+
},
|
99 |
+
"execution_count": 3,
|
100 |
+
"metadata": {},
|
101 |
+
"output_type": "execute_result"
|
102 |
+
},
|
103 |
+
{
|
104 |
+
"data": {
|
105 |
+
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAaAAAAGdCAYAAABU0qcqAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAGJ1JREFUeJzt3QuMFdX9B/CzqCyo7NIFYUEegs9GhaYWKVURCwG1MaKm0dam2BgIFk2V+gimio8mW21jjQ3VJm3dGp81LRpNSoIokLbgA0uIValQWrACVhN2eQhamH9mDPt3FdS77O5v997PJzm53Dtzdg6zs/O9Z+bcc6uyLMsSAHSyHp29QQDICSAAQgggAEIIIABCCCAAQgggAEIIIABCCCAAQhycupg9e/akt956K/Xp0ydVVVVFNweAEuXzG2zdujUNHjw49ejRo/sEUB4+Q4cOjW4GAAdow4YNaciQId3nElze8wGg+/us83mHBdC8efPSUUcdlXr16pXGjh2bXnjhhc9Vz2U3gPLwWefzDgmgxx57LM2ePTvNnTs3vfzyy2n06NFpypQp6e233+6IzQHQHWUd4NRTT81mzZrV8nz37t3Z4MGDs4aGhs+s29TUlM/OrSiKoqTuXfLz+adp9x7Q+++/n1asWJEmTZrU8lo+CiJ/vmzZsk+sv2vXrtTc3NyqAFD+2j2A3nnnnbR79+40cODAVq/nzzdt2vSJ9RsaGlJtbW1LMQIOoDKEj4KbM2dOampqain5sD0Ayl+7fw6of//+6aCDDkqbN29u9Xr+vL6+/hPrV1dXFwWAytLuPaCePXumU045JS1atKjV7Ab583HjxrX35gDopjpkJoR8CPa0adPSV77ylXTqqaemu+++O23fvj1973vf64jNAdANdUgAXXzxxem///1vuvnmm4uBB1/60pfSggULPjEwAYDKVZWPxU5dSD4MOx8NB0D3lg8sq6mp6bqj4ACoTAIIgBACCIAQAgiAEAIIgBACCIAQAgiAEAIIgBACCIAQAgiAEAIIgBACCIAQAgiAEAIIgBACCIAQAgiAEAIIgBACCIAQAgiAEAIIgBACCIAQAgiAEAIIgBACCIAQAgiAEAIIgBACCIAQAgiAEAIIgBACCIAQAgiAEAIIgBACCIAQAgiAEAIIgBACCIAQAgiAEAIIgBACCIAQAgiAEAIIgBACCIAQAgiAEAIIgBACCIAQAgiAEAIIgBACCIAQAgiAEAIIgBACCIAQAgiAEAfHbBagbSZOnFhynYceeqhN2zrzzDNLrrN69eo2basS6QEBEEIAAVAeAXTLLbekqqqqVuWEE05o780A0M11yD2gE088MT3zzDP/v5GD3WoCoLUOSYY8cOrr6zviRwNQJjrkHtAbb7yRBg8enEaOHJkuvfTStH79+v2uu2vXrtTc3NyqAFD+2j2Axo4dmxobG9OCBQvSvffem9atW5fOOOOMtHXr1n2u39DQkGpra1vK0KFD27tJAHRBVVmWZR25gS1btqThw4enu+66K11++eX77AHlZa+8BySEgP3xOaDuo6mpKdXU1Ox3eYePDujbt2867rjj0po1a/a5vLq6uigAVJYO/xzQtm3b0tq1a9OgQYM6elMAVHIAXXvttWnJkiXpX//6V/rrX/+aLrjggnTQQQelb33rW+29KQC6sXa/BPfmm28WYfPuu++mI444Ip1++ulp+fLlxb8BoMMC6NFHH23vH1kWxo8fX3Kdfv36lVxn/vz5JdeB7mTMmDEl13nxxRc7pC0cGHPBARBCAAEQQgABEEIAARBCAAEQQgABEEIAARBCAAEQQgABEEIAARBCAAEQQgABEKLDv5COD02YMKHkOscee2zJdUxGSnfSo0fp74FHjBhRcp38W5nboqqqqk31+Hz0gAAIIYAACCGAAAghgAAIIYAACCGAAAghgAAIIYAACCGAAAghgAAIIYAACCGAAAghgAAIYTbsTvLd73635DrLli3rkLZAVzFo0KCS60yfPr3kOg8++GBqi9dff71N9fh89IAACCGAAAghgAAIIYAACCGAAAghgAAIIYAACCGAAAghgAAIIYAACCGAAAghgAAIYTLSTtKjh6yHj/v1r3/dKdt54403OmU7lMZZEYAQAgiAEAIIgBACCIAQAgiAEAIIgBACCIAQAgiAEAIIgBACCIAQAgiAEAIIgBAmI22DUaNGlVxn4MCBHdIW6M5qa2s7ZTsLFy7slO1QGj0gAEIIIAC6RwAtXbo0nXfeeWnw4MGpqqoqPfHEE62WZ1mWbr755jRo0KDUu3fvNGnSJN/FAcCBB9D27dvT6NGj07x58/a5/M4770z33HNPuu+++9Lzzz+fDjvssDRlypS0c+fOUjcFQBkreRDCOeecU5R9yXs/d999d/rRj36Uzj///OK1Bx54oLgBn/eULrnkkgNvMQBloV3vAa1bty5t2rSpuOz20VEuY8eOTcuWLdtnnV27dqXm5uZWBYDy164BlIfPvoYc58/3Lvu4hoaGIqT2lqFDh7ZnkwDoosJHwc2ZMyc1NTW1lA0bNkQ3CYDuFkD19fXF4+bNm1u9nj/fu+zjqqurU01NTasCQPlr1wAaMWJEETSLFi1qeS2/p5OPhhs3blx7bgqAShsFt23btrRmzZpWAw9WrlyZ6urq0rBhw9LVV1+dfvzjH6djjz22CKSbbrqp+MzQ1KlT27vtAFRSAL300kvprLPOank+e/bs4nHatGmpsbExXX/99cVnhWbMmJG2bNmSTj/99LRgwYLUq1ev9m05AJUVQBMmTCg+77M/+ewIt912W1HK1bnnnltynXxWCChnbZlwN79K0hn+85//dMp26Gaj4ACoTAIIgBACCIAQAgiAEAIIgBACCIAQAgiAEAIIgBACCIAQAgiAEAIIgBACCIAQAgiA7jEbNikdf/zxnbKdv//9752yHWgPP/vZzzplBu1//OMfJdfZunVryXXoeHpAAIQQQACEEEAAhBBAAIQQQACEEEAAhBBAAIQQQACEEEAAhBBAAIQQQACEEEAAhDAZaRf24osvRjeBLqSmpqbkOmeffXabtvWd73yn5DqTJ09OneH2228vuc6WLVs6pC0cGD0gAEIIIABCCCAAQgggAEIIIABCCCAAQgggAEIIIABCCCAAQgggAEIIIABCCCAAQpiMtAurq6tL5Wb06NEl16mqqiq5zqRJk1JbDBkypOQ6PXv2LLnOpZdeWnKdHj1Kf7/43nvvpbZ4/vnnS66za9eukuscfHDpp6AVK1aUXIeuSQ8IgBACCIAQAgiAEAIIgBACCIAQAgiAEAIIgBACCIAQAgiAEAIIgBACCIAQAgiAECYjbYO2TPCYZVnJde67776S69x4442pKxs1alSnTEb6v//9L7XFjh07Sq7z6quvllznt7/9bcl1XnrppZLrLFmyJLXF5s2bS67z5ptvllynd+/eJdd5/fXXS65D16QHBEAIAQRA9wigpUuXpvPOOy8NHjy4uDTyxBNPtFp+2WWXFa9/tJx99tnt2WYAKjGAtm/fXnyp2Lx58/a7Th44GzdubCmPPPLIgbYTgEofhHDOOecU5dNUV1en+vr6A2kXAGWuQ+4BLV68OA0YMCAdf/zx6Yorrkjvvvvup36Nb3Nzc6sCQPlr9wDKL7898MADadGiRemOO+4ohoHmPabdu3fvc/2GhoZUW1vbUoYOHdreTQKgEj4HdMkll7T8++STTy4+93H00UcXvaKJEyd+Yv05c+ak2bNntzzPe0BCCKD8dfgw7JEjR6b+/funNWvW7Pd+UU1NTasCQPnr8ADKPx2d3wMaNGhQR28KgHK+BLdt27ZWvZl169allStXprq6uqLceuut6aKLLipGwa1duzZdf/316ZhjjklTpkxp77YDUEkBlM9HddZZZ7U833v/Ztq0aenee+9Nq1atSr/73e/Sli1big+rTp48Od1+++3FpTYA2Ksqa8ssmR0oH4SQj4YrNzfccEPJdb72ta91SFu6m4/PtvF5vPbaa23a1vLly9tUr9zMmDGjUybP/ec//1lynfyKCt1DU1PTp97XNxccACEEEAAhBBAAIQQQACEEEAAhBBAAIQQQACEEEAAhBBAAIQQQACEEEAAhBBAAIQQQAOXxldzs2x133BHdBPjcJk6c2Cnb+cMf/tAp26Fr0gMCIIQAAiCEAAIghAACIIQAAiCEAAIghAACIIQAAiCEAAIghAACIIQAAiCEAAIghMlIgTDz58+PbgKB9IAACCGAAAghgAAIIYAACCGAAAghgAAIIYAACCGAAAghgAAIIYAACCGAAAghgAAIIYAACCGAAAghgAAIIYAACCGAAAghgAAIIYAACCGAAAghgAAIIYAACCGAAAghgAAIIYAACHFwzGaBclNVVVVyneOOO67kOsuXLy+5Dl2THhAAIQQQAF0/gBoaGtKYMWNSnz590oABA9LUqVPT6tWrW62zc+fONGvWrNSvX790+OGHp4suuiht3ry5vdsNQCUF0JIlS4pwya/BLly4MH3wwQdp8uTJafv27S3rXHPNNempp55Kjz/+eLH+W2+9lS688MKOaDsAlTIIYcGCBa2eNzY2Fj2hFStWpPHjx6empqb0m9/8Jj388MPp61//erHO/fffn774xS8WofXVr361fVsPQGXeA8oDJ1dXV1c85kGU94omTZrUss4JJ5yQhg0blpYtW7bPn7Fr167U3NzcqgBQ/tocQHv27ElXX311Ou2009JJJ51UvLZp06bUs2fP1Ldv31brDhw4sFi2v/tKtbW1LWXo0KFtbRIAlRBA+b2gV155JT366KMH1IA5c+YUPam9ZcOGDQf08wAo4w+iXnnllenpp59OS5cuTUOGDGl5vb6+Pr3//vtpy5YtrXpB+Si4fNm+VFdXFwWAylJSDyjLsiJ85s+fn5599tk0YsSIVstPOeWUdMghh6RFixa1vJYP016/fn0aN25c+7UagMrqAeWX3fIRbk8++WTxWaC993Xyeze9e/cuHi+//PI0e/bsYmBCTU1Nuuqqq4rwMQIOgDYH0L333ls8TpgwodXr+VDryy67rPj3z3/+89SjR4/iA6j5CLcpU6akX/7yl6VsBoAKcHCpl+A+S69evdK8efOKAlSOz3N++Lj8zSqVy28fgBACCIAQAgiAEAIIgBACCIAQAgiAEAIIgBACCIAQAgiAEAIIgBACCIAQAgiAEAIIgO7zjagA7aEtX1TZ2NjYIW2h8+kBARBCAAEQQgABEEIAARBCAAEQQgABEEIAARBCAAEQQgABEEIAARBCAAEQQgABEMJkpEC7qKqqim4C3YweEAAhBBAAIQQQACEEEAAhBBAAIQQQACEEEAAhBBAAIQQQACEEEAAhBBAAIQQQACFMRgp8wp/+9KeS63zzm9/skLZQvvSAAAghgAAIIYAACCGAAAghgAAIIYAACCGAAAghgAAIIYAACCGAAAghgAAIIYAACFGVZVmWupDm5uZUW1sb3QwADlBTU1OqqanZ73I9IABCCCAAun4ANTQ0pDFjxqQ+ffqkAQMGpKlTp6bVq1e3WmfChAmpqqqqVZk5c2Z7txuASgqgJUuWpFmzZqXly5enhQsXpg8++CBNnjw5bd++vdV606dPTxs3bmwpd955Z3u3G4BK+kbUBQsWtHre2NhY9IRWrFiRxo8f3/L6oYcemurr69uvlQCUnR4HOsIhV1dX1+r1hx56KPXv3z+ddNJJac6cOWnHjh37/Rm7du0qRr59tABQAbI22r17d/aNb3wjO+2001q9/qtf/SpbsGBBtmrVquzBBx/MjjzyyOyCCy7Y78+ZO3duPgxcURRFSeVVmpqaPjVH2hxAM2fOzIYPH55t2LDhU9dbtGhR0ZA1a9bsc/nOnTuLRu4t+c+L3mmKoihK6vAAKuke0F5XXnllevrpp9PSpUvTkCFDPnXdsWPHFo9r1qxJRx999CeWV1dXFwWAylJSAOU9pquuuirNnz8/LV68OI0YMeIz66xcubJ4HDRoUNtbCUBlB1A+BPvhhx9OTz75ZPFZoE2bNhWv51Pn9O7dO61du7ZYfu6556Z+/fqlVatWpWuuuaYYITdq1KiO+j8A0B2Vct9nf9f57r///mL5+vXrs/Hjx2d1dXVZdXV1dswxx2TXXXfdZ14H/Kh83ejrloqiKEo64PJZ536TkQLQIUxGCkCXJIAACCGAAAghgAAIIYAACCGAAAghgAAIIYAACCGAAAghgAAIIYAACCGAAAghgAAIIYAACCGAAAghgAAIIYAACCGAAAghgAAIIYAACCGAAAghgAAIIYAACCGAAAghgAAI0eUCKMuy6CYA0Ann8y4XQFu3bo1uAgCdcD6vyrpYl2PPnj3prbfeSn369ElVVVWtljU3N6ehQ4emDRs2pJqamlSp7IcP2Q8fsh8+ZD90nf2Qx0oePoMHD049euy/n3Nw6mLyxg4ZMuRT18l3aiUfYHvZDx+yHz5kP3zIfuga+6G2tvYz1+lyl+AAqAwCCIAQ3SqAqqur09y5c4vHSmY/fMh++JD98CH7ofvthy43CAGAytCtekAAlA8BBEAIAQRACAEEQIhuE0Dz5s1LRx11VOrVq1caO3ZseuGFF1KlueWWW4rZIT5aTjjhhFTuli5dms4777ziU9X5//mJJ55otTwfR3PzzTenQYMGpd69e6dJkyalN954I1Xafrjssss+cXycffbZqZw0NDSkMWPGFDOlDBgwIE2dOjWtXr261To7d+5Ms2bNSv369UuHH354uuiii9LmzZtTpe2HCRMmfOJ4mDlzZupKukUAPfbYY2n27NnF0MKXX345jR49Ok2ZMiW9/fbbqdKceOKJaePGjS3lz3/+cyp327dvL37n+ZuQfbnzzjvTPffck+677770/PPPp8MOO6w4PvITUSXth1weOB89Ph555JFUTpYsWVKEy/Lly9PChQvTBx98kCZPnlzsm72uueaa9NRTT6XHH3+8WD+f2uvCCy9MlbYfctOnT291POR/K11K1g2ceuqp2axZs1qe7969Oxs8eHDW0NCQVZK5c+dmo0ePzipZfsjOnz+/5fmePXuy+vr67Kc//WnLa1u2bMmqq6uzRx55JKuU/ZCbNm1adv7552eV5O233y72xZIlS1p+94ccckj2+OOPt6zz2muvFessW7Ysq5T9kDvzzDOzH/zgB1lX1uV7QO+//35asWJFcVnlo/PF5c+XLVuWKk1+aSm/BDNy5Mh06aWXpvXr16dKtm7durRp06ZWx0c+B1V+mbYSj4/FixcXl2SOP/74dMUVV6R33303lbOmpqbisa6urnjMzxV5b+Cjx0N+mXrYsGFlfTw0fWw/7PXQQw+l/v37p5NOOinNmTMn7dixI3UlXW4y0o9755130u7du9PAgQNbvZ4/f/3111MlyU+qjY2Nxckl707feuut6YwzzkivvPJKcS24EuXhk9vX8bF3WaXIL7/ll5pGjBiR1q5dm2688cZ0zjnnFCfegw46KJWbfOb8q6++Op122mnFCTaX/8579uyZ+vbtWzHHw5597Ifct7/97TR8+PDiDeuqVavSDTfcUNwn+uMf/5i6ii4fQPy//GSy16hRo4pAyg+w3//+9+nyyy8PbRvxLrnkkpZ/n3zyycUxcvTRRxe9ookTJ6Zyk98Dyd98VcJ90LbshxkzZrQ6HvJBOvlxkL85yY+LrqDLX4LLu4/5u7ePj2LJn9fX16dKlr/LO+6449KaNWtSpdp7DDg+Pim/TJv//ZTj8XHllVemp59+Oj333HOtvr4l/53nl+23bNlSEcfDlfvZD/uSv2HNdaXjocsHUN6dPuWUU9KiRYtadTnz5+PGjUuVbNu2bcW7mfydTaXKLzflJ5aPHh/5F3Llo+Eq/fh48803i3tA5XR85OMv8pPu/Pnz07PPPlv8/j8qP1cccsghrY6H/LJTfq+0nI6H7DP2w76sXLmyeOxSx0PWDTz66KPFqKbGxsbs1VdfzWbMmJH17ds327RpU1ZJfvjDH2aLFy/O1q1bl/3lL3/JJk2alPXv378YAVPOtm7dmv3tb38rSn7I3nXXXcW///3vfxfLf/KTnxTHw5NPPpmtWrWqGAk2YsSI7L333ssqZT/ky6699tpipFd+fDzzzDPZl7/85ezYY4/Ndu7cmZWLK664IqutrS3+DjZu3NhSduzY0bLOzJkzs2HDhmXPPvts9tJLL2Xjxo0rSjm54jP2w5o1a7Lbbrut+P/nx0P+tzFy5Mhs/PjxWVfSLQIo94tf/KI4qHr27FkMy16+fHlWaS6++OJs0KBBxT448sgji+f5gVbunnvuueKE+/GSDzveOxT7pptuygYOHFi8UZk4cWK2evXqrJL2Q37imTx5cnbEEUcUw5CHDx+eTZ8+vezepO3r/5+X+++/v2Wd/I3H97///ewLX/hCduihh2YXXHBBcXKupP2wfv36Imzq6uqKv4ljjjkmu+6667KmpqasK/F1DACE6PL3gAAoTwIIgBACCIAQAgiAEAIIgBACCIAQAgiAEAIIgBACCIAQAgiAEAIIgBACCIAU4f8ASTxL6JoQBngAAAAASUVORK5CYII=",
|
106 |
+
"text/plain": [
|
107 |
+
"<Figure size 640x480 with 1 Axes>"
|
108 |
+
]
|
109 |
+
},
|
110 |
+
"metadata": {},
|
111 |
+
"output_type": "display_data"
|
112 |
+
}
|
113 |
+
],
|
114 |
+
"source": [
|
115 |
+
"plt.imshow(x_train[2],cmap='gray')"
|
116 |
+
]
|
117 |
+
},
|
118 |
+
{
|
119 |
+
"cell_type": "code",
|
120 |
+
"execution_count": 4,
|
121 |
+
"id": "a2893d80",
|
122 |
+
"metadata": {},
|
123 |
+
"outputs": [
|
124 |
+
{
|
125 |
+
"data": {
|
126 |
+
"text/plain": [
|
127 |
+
"array([[[0., 0., 0., ..., 0., 0., 0.],\n",
|
128 |
+
" [0., 0., 0., ..., 0., 0., 0.],\n",
|
129 |
+
" [0., 0., 0., ..., 0., 0., 0.],\n",
|
130 |
+
" ...,\n",
|
131 |
+
" [0., 0., 0., ..., 0., 0., 0.],\n",
|
132 |
+
" [0., 0., 0., ..., 0., 0., 0.],\n",
|
133 |
+
" [0., 0., 0., ..., 0., 0., 0.]],\n",
|
134 |
+
"\n",
|
135 |
+
" [[0., 0., 0., ..., 0., 0., 0.],\n",
|
136 |
+
" [0., 0., 0., ..., 0., 0., 0.],\n",
|
137 |
+
" [0., 0., 0., ..., 0., 0., 0.],\n",
|
138 |
+
" ...,\n",
|
139 |
+
" [0., 0., 0., ..., 0., 0., 0.],\n",
|
140 |
+
" [0., 0., 0., ..., 0., 0., 0.],\n",
|
141 |
+
" [0., 0., 0., ..., 0., 0., 0.]],\n",
|
142 |
+
"\n",
|
143 |
+
" [[0., 0., 0., ..., 0., 0., 0.],\n",
|
144 |
+
" [0., 0., 0., ..., 0., 0., 0.],\n",
|
145 |
+
" [0., 0., 0., ..., 0., 0., 0.],\n",
|
146 |
+
" ...,\n",
|
147 |
+
" [0., 0., 0., ..., 0., 0., 0.],\n",
|
148 |
+
" [0., 0., 0., ..., 0., 0., 0.],\n",
|
149 |
+
" [0., 0., 0., ..., 0., 0., 0.]],\n",
|
150 |
+
"\n",
|
151 |
+
" ...,\n",
|
152 |
+
"\n",
|
153 |
+
" [[0., 0., 0., ..., 0., 0., 0.],\n",
|
154 |
+
" [0., 0., 0., ..., 0., 0., 0.],\n",
|
155 |
+
" [0., 0., 0., ..., 0., 0., 0.],\n",
|
156 |
+
" ...,\n",
|
157 |
+
" [0., 0., 0., ..., 0., 0., 0.],\n",
|
158 |
+
" [0., 0., 0., ..., 0., 0., 0.],\n",
|
159 |
+
" [0., 0., 0., ..., 0., 0., 0.]],\n",
|
160 |
+
"\n",
|
161 |
+
" [[0., 0., 0., ..., 0., 0., 0.],\n",
|
162 |
+
" [0., 0., 0., ..., 0., 0., 0.],\n",
|
163 |
+
" [0., 0., 0., ..., 0., 0., 0.],\n",
|
164 |
+
" ...,\n",
|
165 |
+
" [0., 0., 0., ..., 0., 0., 0.],\n",
|
166 |
+
" [0., 0., 0., ..., 0., 0., 0.],\n",
|
167 |
+
" [0., 0., 0., ..., 0., 0., 0.]],\n",
|
168 |
+
"\n",
|
169 |
+
" [[0., 0., 0., ..., 0., 0., 0.],\n",
|
170 |
+
" [0., 0., 0., ..., 0., 0., 0.],\n",
|
171 |
+
" [0., 0., 0., ..., 0., 0., 0.],\n",
|
172 |
+
" ...,\n",
|
173 |
+
" [0., 0., 0., ..., 0., 0., 0.],\n",
|
174 |
+
" [0., 0., 0., ..., 0., 0., 0.],\n",
|
175 |
+
" [0., 0., 0., ..., 0., 0., 0.]]])"
|
176 |
+
]
|
177 |
+
},
|
178 |
+
"execution_count": 4,
|
179 |
+
"metadata": {},
|
180 |
+
"output_type": "execute_result"
|
181 |
+
}
|
182 |
+
],
|
183 |
+
"source": [
|
184 |
+
"x_train,x_test=x_train/255.0,x_test/255.0\n",
|
185 |
+
"x_train"
|
186 |
+
]
|
187 |
+
},
|
188 |
+
{
|
189 |
+
"cell_type": "code",
|
190 |
+
"execution_count": 3,
|
191 |
+
"id": "9d3b090a",
|
192 |
+
"metadata": {},
|
193 |
+
"outputs": [
|
194 |
+
{
|
195 |
+
"name": "stderr",
|
196 |
+
"output_type": "stream",
|
197 |
+
"text": [
|
198 |
+
"c:\\Users\\najaf\\AppData\\Local\\Programs\\Python\\Python312\\Lib\\site-packages\\keras\\src\\layers\\reshaping\\flatten.py:37: UserWarning: Do not pass an `input_shape`/`input_dim` argument to a layer. When using Sequential models, prefer using an `Input(shape)` object as the first layer in the model instead.\n",
|
199 |
+
" super().__init__(**kwargs)\n"
|
200 |
+
]
|
201 |
+
},
|
202 |
+
{
|
203 |
+
"ename": "NameError",
|
204 |
+
"evalue": "name 'x_train' is not defined",
|
205 |
+
"output_type": "error",
|
206 |
+
"traceback": [
|
207 |
+
"\u001b[31m---------------------------------------------------------------------------\u001b[39m",
|
208 |
+
"\u001b[31mNameError\u001b[39m Traceback (most recent call last)",
|
209 |
+
"\u001b[36mCell\u001b[39m\u001b[36m \u001b[39m\u001b[32mIn[3]\u001b[39m\u001b[32m, line 11\u001b[39m\n\u001b[32m 3\u001b[39m model = keras.models.Sequential([\n\u001b[32m 4\u001b[39m keras.layers.Flatten(input_shape=(\u001b[32m28\u001b[39m,\u001b[32m28\u001b[39m)),\n\u001b[32m 5\u001b[39m keras.layers.Dense(\u001b[32m128\u001b[39m,activation=\u001b[33m'\u001b[39m\u001b[33mrelu\u001b[39m\u001b[33m'\u001b[39m),\n\u001b[32m (...)\u001b[39m\u001b[32m 8\u001b[39m \n\u001b[32m 9\u001b[39m ])\n\u001b[32m 10\u001b[39m model.compile(optimizer=\u001b[33m'\u001b[39m\u001b[33madam\u001b[39m\u001b[33m'\u001b[39m,loss=\u001b[33m'\u001b[39m\u001b[33msparse_categorical_crossentropy\u001b[39m\u001b[33m'\u001b[39m,metrics=[\u001b[33m'\u001b[39m\u001b[33maccuracy\u001b[39m\u001b[33m'\u001b[39m])\n\u001b[32m---> \u001b[39m\u001b[32m11\u001b[39m model.fit(\u001b[43mx_train\u001b[49m,y_train,epochs=\u001b[32m5\u001b[39m)\n",
|
210 |
+
"\u001b[31mNameError\u001b[39m: name 'x_train' is not defined"
|
211 |
+
]
|
212 |
+
}
|
213 |
+
],
|
214 |
+
"source": [
|
215 |
+
"import tensorflow as tf\n",
|
216 |
+
"from tensorflow import keras\n",
|
217 |
+
"model = keras.models.Sequential([\n",
|
218 |
+
" keras.layers.Flatten(input_shape=(28,28)),\n",
|
219 |
+
" keras.layers.Dense(128,activation='relu'),\n",
|
220 |
+
" keras.layers.Dense(10,activation='softmax')\n",
|
221 |
+
" \n",
|
222 |
+
" \n",
|
223 |
+
"])\n",
|
224 |
+
"model.compile(optimizer='adam',loss='sparse_categorical_crossentropy',metrics=['accuracy'])\n",
|
225 |
+
"model.fit(x_train,y_train,epochs=5)"
|
226 |
+
]
|
227 |
+
},
|
228 |
+
{
|
229 |
+
"cell_type": "code",
|
230 |
+
"execution_count": 2,
|
231 |
+
"id": "dd5b05dd",
|
232 |
+
"metadata": {},
|
233 |
+
"outputs": [
|
234 |
+
{
|
235 |
+
"ename": "NameError",
|
236 |
+
"evalue": "name 'model' is not defined",
|
237 |
+
"output_type": "error",
|
238 |
+
"traceback": [
|
239 |
+
"\u001b[31m---------------------------------------------------------------------------\u001b[39m",
|
240 |
+
"\u001b[31mNameError\u001b[39m Traceback (most recent call last)",
|
241 |
+
"\u001b[36mCell\u001b[39m\u001b[36m \u001b[39m\u001b[32mIn[2]\u001b[39m\u001b[32m, line 1\u001b[39m\n\u001b[32m----> \u001b[39m\u001b[32m1\u001b[39m \u001b[43mmodel\u001b[49m.fit(x_train,y_train,epochs=\u001b[32m5\u001b[39m)\n",
|
242 |
+
"\u001b[31mNameError\u001b[39m: name 'model' is not defined"
|
243 |
+
]
|
244 |
+
}
|
245 |
+
],
|
246 |
+
"source": [
|
247 |
+
"model.fit(x_train,y_train,epochs=5)"
|
248 |
+
]
|
249 |
+
},
|
250 |
+
{
|
251 |
+
"cell_type": "code",
|
252 |
+
"execution_count": null,
|
253 |
+
"id": "6a8d6734",
|
254 |
+
"metadata": {},
|
255 |
+
"outputs": [
|
256 |
+
{
|
257 |
+
"name": "stdout",
|
258 |
+
"output_type": "stream",
|
259 |
+
"text": [
|
260 |
+
"\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 2ms/step - accuracy: 0.9685 - loss: 0.1016\n",
|
261 |
+
"{test_accuracy*100:.2f}%\n"
|
262 |
+
]
|
263 |
+
}
|
264 |
+
],
|
265 |
+
"source": [
|
266 |
+
"test_loss,test_accuracy = model.evaluate(x_test,y_test)\n",
|
267 |
+
"print('{test_accuracy*100:.2f}%')\n"
|
268 |
+
]
|
269 |
+
},
|
270 |
+
{
|
271 |
+
"cell_type": "code",
|
272 |
+
"execution_count": 1,
|
273 |
+
"id": "a7179f4e",
|
274 |
+
"metadata": {},
|
275 |
+
"outputs": [
|
276 |
+
{
|
277 |
+
"ename": "NameError",
|
278 |
+
"evalue": "name 'model' is not defined",
|
279 |
+
"output_type": "error",
|
280 |
+
"traceback": [
|
281 |
+
"\u001b[31m---------------------------------------------------------------------------\u001b[39m",
|
282 |
+
"\u001b[31mNameError\u001b[39m Traceback (most recent call last)",
|
283 |
+
"\u001b[36mCell\u001b[39m\u001b[36m \u001b[39m\u001b[32mIn[1]\u001b[39m\u001b[32m, line 1\u001b[39m\n\u001b[32m----> \u001b[39m\u001b[32m1\u001b[39m \u001b[43mmodel\u001b[49m.fit(x_train,y_train,epochs=\u001b[33m'\u001b[39m\u001b[33m5\u001b[39m\u001b[33m'\u001b[39m)\n",
|
284 |
+
"\u001b[31mNameError\u001b[39m: name 'model' is not defined"
|
285 |
+
]
|
286 |
+
}
|
287 |
+
],
|
288 |
+
"source": [
|
289 |
+
"model.fit(x_train,y_train,epochs='5')"
|
290 |
+
]
|
291 |
+
}
|
292 |
+
],
|
293 |
+
"metadata": {
|
294 |
+
"kernelspec": {
|
295 |
+
"display_name": "Python 3",
|
296 |
+
"language": "python",
|
297 |
+
"name": "python3"
|
298 |
+
},
|
299 |
+
"language_info": {
|
300 |
+
"codemirror_mode": {
|
301 |
+
"name": "ipython",
|
302 |
+
"version": 3
|
303 |
+
},
|
304 |
+
"file_extension": ".py",
|
305 |
+
"mimetype": "text/x-python",
|
306 |
+
"name": "python",
|
307 |
+
"nbconvert_exporter": "python",
|
308 |
+
"pygments_lexer": "ipython3",
|
309 |
+
"version": "3.12.7"
|
310 |
+
}
|
311 |
+
},
|
312 |
+
"nbformat": 4,
|
313 |
+
"nbformat_minor": 5
|
314 |
+
}
|
one.py
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import tensorflow as tf
|
2 |
+
from tensorflow import keras
|
3 |
+
|
4 |
+
import numpy as np
|
5 |
+
import matplotlib.pyplot as plt
|
6 |
+
from huggingface_hub import login
|
7 |
+
|
8 |
+
(x_train,y_train),(x_test,y_test) = tf.keras.datasets.mnist.load_data()
|
9 |
+
|
10 |
+
x_train,x_test = x_train/255.0,x_test/255.0
|
11 |
+
|
12 |
+
import tensorflow as tf
|
13 |
+
from tensorflow import keras
|
14 |
+
model = keras.models.Sequential([
|
15 |
+
keras.layers.Flatten(input_shape=(28,28)),
|
16 |
+
keras.layers.Dense(128,activation='relu'),
|
17 |
+
keras.layers.Dense(10,activation='softmax')
|
18 |
+
|
19 |
+
|
20 |
+
])
|
21 |
+
|
22 |
+
model.compile(optimizer='adam',loss='sparse_categorical_crossentropy',metrics=['accuracy'])
|
23 |
+
model.fit(x_train,y_train,epochs=5)
|
24 |
+
|
25 |
+
model.save("mnist_model.keras")
|
26 |
+
|
27 |
+
login()
|
txt
ADDED
File without changes
|