File size: 19,594 Bytes
338964a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 |
{
"cells": [
{
"cell_type": "code",
"execution_count": null,
"id": "283a8867",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Downloading data from https://storage.googleapis.com/tensorflow/tf-keras-datasets/mnist.npz\n",
"\u001b[1m11490434/11490434\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 0us/step\n"
]
},
{
"data": {
"text/plain": [
"array([[[0, 0, 0, ..., 0, 0, 0],\n",
" [0, 0, 0, ..., 0, 0, 0],\n",
" [0, 0, 0, ..., 0, 0, 0],\n",
" ...,\n",
" [0, 0, 0, ..., 0, 0, 0],\n",
" [0, 0, 0, ..., 0, 0, 0],\n",
" [0, 0, 0, ..., 0, 0, 0]],\n",
"\n",
" [[0, 0, 0, ..., 0, 0, 0],\n",
" [0, 0, 0, ..., 0, 0, 0],\n",
" [0, 0, 0, ..., 0, 0, 0],\n",
" ...,\n",
" [0, 0, 0, ..., 0, 0, 0],\n",
" [0, 0, 0, ..., 0, 0, 0],\n",
" [0, 0, 0, ..., 0, 0, 0]],\n",
"\n",
" [[0, 0, 0, ..., 0, 0, 0],\n",
" [0, 0, 0, ..., 0, 0, 0],\n",
" [0, 0, 0, ..., 0, 0, 0],\n",
" ...,\n",
" [0, 0, 0, ..., 0, 0, 0],\n",
" [0, 0, 0, ..., 0, 0, 0],\n",
" [0, 0, 0, ..., 0, 0, 0]],\n",
"\n",
" ...,\n",
"\n",
" [[0, 0, 0, ..., 0, 0, 0],\n",
" [0, 0, 0, ..., 0, 0, 0],\n",
" [0, 0, 0, ..., 0, 0, 0],\n",
" ...,\n",
" [0, 0, 0, ..., 0, 0, 0],\n",
" [0, 0, 0, ..., 0, 0, 0],\n",
" [0, 0, 0, ..., 0, 0, 0]],\n",
"\n",
" [[0, 0, 0, ..., 0, 0, 0],\n",
" [0, 0, 0, ..., 0, 0, 0],\n",
" [0, 0, 0, ..., 0, 0, 0],\n",
" ...,\n",
" [0, 0, 0, ..., 0, 0, 0],\n",
" [0, 0, 0, ..., 0, 0, 0],\n",
" [0, 0, 0, ..., 0, 0, 0]],\n",
"\n",
" [[0, 0, 0, ..., 0, 0, 0],\n",
" [0, 0, 0, ..., 0, 0, 0],\n",
" [0, 0, 0, ..., 0, 0, 0],\n",
" ...,\n",
" [0, 0, 0, ..., 0, 0, 0],\n",
" [0, 0, 0, ..., 0, 0, 0],\n",
" [0, 0, 0, ..., 0, 0, 0]]], dtype=uint8)"
]
},
"execution_count": 1,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"import tensorflow as tf\n",
"from tensorflow import keras \n",
"import numpy as np\n",
"import matplotlib.pyplot as plt\n",
"\n",
"(x_train,y_train),(x_test,y_test) = tf.keras.datasets.mnist.load_data()\n",
"\n",
"x_train"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "c4566813",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"<matplotlib.image.AxesImage at 0x263602585f0>"
]
},
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAaAAAAGdCAYAAABU0qcqAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAGJ1JREFUeJzt3QuMFdX9B/CzqCyo7NIFYUEegs9GhaYWKVURCwG1MaKm0dam2BgIFk2V+gimio8mW21jjQ3VJm3dGp81LRpNSoIokLbgA0uIValQWrACVhN2eQhamH9mDPt3FdS77O5v997PJzm53Dtzdg6zs/O9Z+bcc6uyLMsSAHSyHp29QQDICSAAQgggAEIIIABCCCAAQgggAEIIIABCCCAAQhycupg9e/akt956K/Xp0ydVVVVFNweAEuXzG2zdujUNHjw49ejRo/sEUB4+Q4cOjW4GAAdow4YNaciQId3nElze8wGg+/us83mHBdC8efPSUUcdlXr16pXGjh2bXnjhhc9Vz2U3gPLwWefzDgmgxx57LM2ePTvNnTs3vfzyy2n06NFpypQp6e233+6IzQHQHWUd4NRTT81mzZrV8nz37t3Z4MGDs4aGhs+s29TUlM/OrSiKoqTuXfLz+adp9x7Q+++/n1asWJEmTZrU8lo+CiJ/vmzZsk+sv2vXrtTc3NyqAFD+2j2A3nnnnbR79+40cODAVq/nzzdt2vSJ9RsaGlJtbW1LMQIOoDKEj4KbM2dOampqain5sD0Ayl+7fw6of//+6aCDDkqbN29u9Xr+vL6+/hPrV1dXFwWAytLuPaCePXumU045JS1atKjV7Ab583HjxrX35gDopjpkJoR8CPa0adPSV77ylXTqqaemu+++O23fvj1973vf64jNAdANdUgAXXzxxem///1vuvnmm4uBB1/60pfSggULPjEwAYDKVZWPxU5dSD4MOx8NB0D3lg8sq6mp6bqj4ACoTAIIgBACCIAQAgiAEAIIgBACCIAQAgiAEAIIgBACCIAQAgiAEAIIgBACCIAQAgiAEAIIgBACCIAQAgiAEAIIgBACCIAQAgiAEAIIgBACCIAQAgiAEAIIgBACCIAQAgiAEAIIgBACCIAQAgiAEAIIgBACCIAQAgiAEAIIgBACCIAQAgiAEAIIgBACCIAQAgiAEAIIgBACCIAQAgiAEAIIgBACCIAQAgiAEAIIgBACCIAQAgiAEAIIgBACCIAQAgiAEAIIgBACCIAQAgiAEAfHbBagbSZOnFhynYceeqhN2zrzzDNLrrN69eo2basS6QEBEEIAAVAeAXTLLbekqqqqVuWEE05o780A0M11yD2gE088MT3zzDP/v5GD3WoCoLUOSYY8cOrr6zviRwNQJjrkHtAbb7yRBg8enEaOHJkuvfTStH79+v2uu2vXrtTc3NyqAFD+2j2Axo4dmxobG9OCBQvSvffem9atW5fOOOOMtHXr1n2u39DQkGpra1vK0KFD27tJAHRBVVmWZR25gS1btqThw4enu+66K11++eX77AHlZa+8BySEgP3xOaDuo6mpKdXU1Ox3eYePDujbt2867rjj0po1a/a5vLq6uigAVJYO/xzQtm3b0tq1a9OgQYM6elMAVHIAXXvttWnJkiXpX//6V/rrX/+aLrjggnTQQQelb33rW+29KQC6sXa/BPfmm28WYfPuu++mI444Ip1++ulp+fLlxb8BoMMC6NFHH23vH1kWxo8fX3Kdfv36lVxn/vz5JdeB7mTMmDEl13nxxRc7pC0cGHPBARBCAAEQQgABEEIAARBCAAEQQgABEEIAARBCAAEQQgABEEIAARBCAAEQQgABEKLDv5COD02YMKHkOscee2zJdUxGSnfSo0fp74FHjBhRcp38W5nboqqqqk31+Hz0gAAIIYAACCGAAAghgAAIIYAACCGAAAghgAAIIYAACCGAAAghgAAIIYAACCGAAAghgAAIYTbsTvLd73635DrLli3rkLZAVzFo0KCS60yfPr3kOg8++GBqi9dff71N9fh89IAACCGAAAghgAAIIYAACCGAAAghgAAIIYAACCGAAAghgAAIIYAACCGAAAghgAAIYTLSTtKjh6yHj/v1r3/dKdt54403OmU7lMZZEYAQAgiAEAIIgBACCIAQAgiAEAIIgBACCIAQAgiAEAIIgBACCIAQAgiAEAIIgBAmI22DUaNGlVxn4MCBHdIW6M5qa2s7ZTsLFy7slO1QGj0gAEIIIAC6RwAtXbo0nXfeeWnw4MGpqqoqPfHEE62WZ1mWbr755jRo0KDUu3fvNGnSJN/FAcCBB9D27dvT6NGj07x58/a5/M4770z33HNPuu+++9Lzzz+fDjvssDRlypS0c+fOUjcFQBkreRDCOeecU5R9yXs/d999d/rRj36Uzj///OK1Bx54oLgBn/eULrnkkgNvMQBloV3vAa1bty5t2rSpuOz20VEuY8eOTcuWLdtnnV27dqXm5uZWBYDy164BlIfPvoYc58/3Lvu4hoaGIqT2lqFDh7ZnkwDoosJHwc2ZMyc1NTW1lA0bNkQ3CYDuFkD19fXF4+bNm1u9nj/fu+zjqqurU01NTasCQPlr1wAaMWJEETSLFi1qeS2/p5OPhhs3blx7bgqAShsFt23btrRmzZpWAw9WrlyZ6urq0rBhw9LVV1+dfvzjH6djjz22CKSbbrqp+MzQ1KlT27vtAFRSAL300kvprLPOank+e/bs4nHatGmpsbExXX/99cVnhWbMmJG2bNmSTj/99LRgwYLUq1ev9m05AJUVQBMmTCg+77M/+ewIt912W1HK1bnnnltynXxWCChnbZlwN79K0hn+85//dMp26Gaj4ACoTAIIgBACCIAQAgiAEAIIgBACCIAQAgiAEAIIgBACCIAQAgiAEAIIgBACCIAQAgiA7jEbNikdf/zxnbKdv//9752yHWgPP/vZzzplBu1//OMfJdfZunVryXXoeHpAAIQQQACEEEAAhBBAAIQQQACEEEAAhBBAAIQQQACEEEAAhBBAAIQQQACEEEAAhDAZaRf24osvRjeBLqSmpqbkOmeffXabtvWd73yn5DqTJ09OneH2228vuc6WLVs6pC0cGD0gAEIIIABCCCAAQgggAEIIIABCCCAAQgggAEIIIABCCCAAQgggAEIIIABCCCAAQpiMtAurq6tL5Wb06NEl16mqqiq5zqRJk1JbDBkypOQ6PXv2LLnOpZdeWnKdHj1Kf7/43nvvpbZ4/vnnS66za9eukuscfHDpp6AVK1aUXIeuSQ8IgBACCIAQAgiAEAIIgBACCIAQAgiAEAIIgBACCIAQAgiAEAIIgBACCIAQAgiAECYjbYO2TPCYZVnJde67776S69x4442pKxs1alSnTEb6v//9L7XFjh07Sq7z6quvllznt7/9bcl1XnrppZLrLFmyJLXF5s2bS67z5ptvllynd+/eJdd5/fXXS65D16QHBEAIAQRA9wigpUuXpvPOOy8NHjy4uDTyxBNPtFp+2WWXFa9/tJx99tnt2WYAKjGAtm/fXnyp2Lx58/a7Th44GzdubCmPPPLIgbYTgEofhHDOOecU5dNUV1en+vr6A2kXAGWuQ+4BLV68OA0YMCAdf/zx6Yorrkjvvvvup36Nb3Nzc6sCQPlr9wDKL7898MADadGiRemOO+4ohoHmPabdu3fvc/2GhoZUW1vbUoYOHdreTQKgEj4HdMkll7T8++STTy4+93H00UcXvaKJEyd+Yv05c+ak2bNntzzPe0BCCKD8dfgw7JEjR6b+/funNWvW7Pd+UU1NTasCQPnr8ADKPx2d3wMaNGhQR28KgHK+BLdt27ZWvZl169allStXprq6uqLceuut6aKLLipGwa1duzZdf/316ZhjjklTpkxp77YDUEkBlM9HddZZZ7U833v/Ztq0aenee+9Nq1atSr/73e/Sli1big+rTp48Od1+++3FpTYA2Ksqa8ssmR0oH4SQj4YrNzfccEPJdb72ta91SFu6m4/PtvF5vPbaa23a1vLly9tUr9zMmDGjUybP/ec//1lynfyKCt1DU1PTp97XNxccACEEEAAhBBAAIQQQACEEEAAhBBAAIQQQACEEEAAhBBAAIQQQACEEEAAhBBAAIQQQAOXxldzs2x133BHdBPjcJk6c2Cnb+cMf/tAp26Fr0gMCIIQAAiCEAAIghAACIIQAAiCEAAIghAACIIQAAiCEAAIghAACIIQAAiCEAAIghMlIgTDz58+PbgKB9IAACCGAAAghgAAIIYAACCGAAAghgAAIIYAACCGAAAghgAAIIYAACCGAAAghgAAIIYAACCGAAAghgAAIIYAACCGAAAghgAAIIYAACCGAAAghgAAIIYAACCGAAAghgAAIIYAACHFwzGaBclNVVVVyneOOO67kOsuXLy+5Dl2THhAAIQQQAF0/gBoaGtKYMWNSnz590oABA9LUqVPT6tWrW62zc+fONGvWrNSvX790+OGHp4suuiht3ry5vdsNQCUF0JIlS4pwya/BLly4MH3wwQdp8uTJafv27S3rXHPNNempp55Kjz/+eLH+W2+9lS688MKOaDsAlTIIYcGCBa2eNzY2Fj2hFStWpPHjx6empqb0m9/8Jj388MPp61//erHO/fffn774xS8WofXVr361fVsPQGXeA8oDJ1dXV1c85kGU94omTZrUss4JJ5yQhg0blpYtW7bPn7Fr167U3NzcqgBQ/tocQHv27ElXX311Ou2009JJJ51UvLZp06bUs2fP1Ldv31brDhw4sFi2v/tKtbW1LWXo0KFtbRIAlRBA+b2gV155JT366KMH1IA5c+YUPam9ZcOGDQf08wAo4w+iXnnllenpp59OS5cuTUOGDGl5vb6+Pr3//vtpy5YtrXpB+Si4fNm+VFdXFwWAylJSDyjLsiJ85s+fn5599tk0YsSIVstPOeWUdMghh6RFixa1vJYP016/fn0aN25c+7UagMrqAeWX3fIRbk8++WTxWaC993Xyeze9e/cuHi+//PI0e/bsYmBCTU1Nuuqqq4rwMQIOgDYH0L333ls8TpgwodXr+VDryy67rPj3z3/+89SjR4/iA6j5CLcpU6akX/7yl6VsBoAKcHCpl+A+S69evdK8efOKAlSOz3N++Lj8zSqVy28fgBACCIAQAgiAEAIIgBACCIAQAgiAEAIIgBACCIAQAgiAEAIIgBACCIAQAgiAEAIIgO7zjagA7aEtX1TZ2NjYIW2h8+kBARBCAAEQQgABEEIAARBCAAEQQgABEEIAARBCAAEQQgABEEIAARBCAAEQQgABEMJkpEC7qKqqim4C3YweEAAhBBAAIQQQACEEEAAhBBAAIQQQACEEEAAhBBAAIQQQACEEEAAhBBAAIQQQACFMRgp8wp/+9KeS63zzm9/skLZQvvSAAAghgAAIIYAACCGAAAghgAAIIYAACCGAAAghgAAIIYAACCGAAAghgAAIIYAACFGVZVmWupDm5uZUW1sb3QwADlBTU1OqqanZ73I9IABCCCAAun4ANTQ0pDFjxqQ+ffqkAQMGpKlTp6bVq1e3WmfChAmpqqqqVZk5c2Z7txuASgqgJUuWpFmzZqXly5enhQsXpg8++CBNnjw5bd++vdV606dPTxs3bmwpd955Z3u3G4BK+kbUBQsWtHre2NhY9IRWrFiRxo8f3/L6oYcemurr69uvlQCUnR4HOsIhV1dX1+r1hx56KPXv3z+ddNJJac6cOWnHjh37/Rm7du0qRr59tABQAbI22r17d/aNb3wjO+2001q9/qtf/SpbsGBBtmrVquzBBx/MjjzyyOyCCy7Y78+ZO3duPgxcURRFSeVVmpqaPjVH2hxAM2fOzIYPH55t2LDhU9dbtGhR0ZA1a9bsc/nOnTuLRu4t+c+L3mmKoihK6vAAKuke0F5XXnllevrpp9PSpUvTkCFDPnXdsWPHFo9r1qxJRx999CeWV1dXFwWAylJSAOU9pquuuirNnz8/LV68OI0YMeIz66xcubJ4HDRoUNtbCUBlB1A+BPvhhx9OTz75ZPFZoE2bNhWv51Pn9O7dO61du7ZYfu6556Z+/fqlVatWpWuuuaYYITdq1KiO+j8A0B2Vct9nf9f57r///mL5+vXrs/Hjx2d1dXVZdXV1dswxx2TXXXfdZ14H/Kh83ejrloqiKEo64PJZ536TkQLQIUxGCkCXJIAACCGAAAghgAAIIYAACCGAAAghgAAIIYAACCGAAAghgAAIIYAACCGAAAghgAAIIYAACCGAAAghgAAIIYAACCGAAAghgAAIIYAACCGAAAghgAAIIYAACCGAAAghgAAI0eUCKMuy6CYA0Ann8y4XQFu3bo1uAgCdcD6vyrpYl2PPnj3prbfeSn369ElVVVWtljU3N6ehQ4emDRs2pJqamlSp7IcP2Q8fsh8+ZD90nf2Qx0oePoMHD049euy/n3Nw6mLyxg4ZMuRT18l3aiUfYHvZDx+yHz5kP3zIfuga+6G2tvYz1+lyl+AAqAwCCIAQ3SqAqqur09y5c4vHSmY/fMh++JD98CH7ofvthy43CAGAytCtekAAlA8BBEAIAQRACAEEQIhuE0Dz5s1LRx11VOrVq1caO3ZseuGFF1KlueWWW4rZIT5aTjjhhFTuli5dms4777ziU9X5//mJJ55otTwfR3PzzTenQYMGpd69e6dJkyalN954I1Xafrjssss+cXycffbZqZw0NDSkMWPGFDOlDBgwIE2dOjWtXr261To7d+5Ms2bNSv369UuHH354uuiii9LmzZtTpe2HCRMmfOJ4mDlzZupKukUAPfbYY2n27NnF0MKXX345jR49Ok2ZMiW9/fbbqdKceOKJaePGjS3lz3/+cyp327dvL37n+ZuQfbnzzjvTPffck+677770/PPPp8MOO6w4PvITUSXth1weOB89Ph555JFUTpYsWVKEy/Lly9PChQvTBx98kCZPnlzsm72uueaa9NRTT6XHH3+8WD+f2uvCCy9MlbYfctOnT291POR/K11K1g2ceuqp2axZs1qe7969Oxs8eHDW0NCQVZK5c+dmo0ePzipZfsjOnz+/5fmePXuy+vr67Kc//WnLa1u2bMmqq6uzRx55JKuU/ZCbNm1adv7552eV5O233y72xZIlS1p+94ccckj2+OOPt6zz2muvFessW7Ysq5T9kDvzzDOzH/zgB1lX1uV7QO+//35asWJFcVnlo/PF5c+XLVuWKk1+aSm/BDNy5Mh06aWXpvXr16dKtm7durRp06ZWx0c+B1V+mbYSj4/FixcXl2SOP/74dMUVV6R33303lbOmpqbisa6urnjMzxV5b+Cjx0N+mXrYsGFlfTw0fWw/7PXQQw+l/v37p5NOOinNmTMn7dixI3UlXW4y0o9755130u7du9PAgQNbvZ4/f/3111MlyU+qjY2Nxckl707feuut6YwzzkivvPJKcS24EuXhk9vX8bF3WaXIL7/ll5pGjBiR1q5dm2688cZ0zjnnFCfegw46KJWbfOb8q6++Op122mnFCTaX/8579uyZ+vbtWzHHw5597Ifct7/97TR8+PDiDeuqVavSDTfcUNwn+uMf/5i6ii4fQPy//GSy16hRo4pAyg+w3//+9+nyyy8PbRvxLrnkkpZ/n3zyycUxcvTRRxe9ookTJ6Zyk98Dyd98VcJ90LbshxkzZrQ6HvJBOvlxkL85yY+LrqDLX4LLu4/5u7ePj2LJn9fX16dKlr/LO+6449KaNWtSpdp7DDg+Pim/TJv//ZTj8XHllVemp59+Oj333HOtvr4l/53nl+23bNlSEcfDlfvZD/uSv2HNdaXjocsHUN6dPuWUU9KiRYtadTnz5+PGjUuVbNu2bcW7mfydTaXKLzflJ5aPHh/5F3Llo+Eq/fh48803i3tA5XR85OMv8pPu/Pnz07PPPlv8/j8qP1cccsghrY6H/LJTfq+0nI6H7DP2w76sXLmyeOxSx0PWDTz66KPFqKbGxsbs1VdfzWbMmJH17ds327RpU1ZJfvjDH2aLFy/O1q1bl/3lL3/JJk2alPXv378YAVPOtm7dmv3tb38rSn7I3nXXXcW///3vfxfLf/KTnxTHw5NPPpmtWrWqGAk2YsSI7L333ssqZT/ky6699tpipFd+fDzzzDPZl7/85ezYY4/Ndu7cmZWLK664IqutrS3+DjZu3NhSduzY0bLOzJkzs2HDhmXPPvts9tJLL2Xjxo0rSjm54jP2w5o1a7Lbbrut+P/nx0P+tzFy5Mhs/PjxWVfSLQIo94tf/KI4qHr27FkMy16+fHlWaS6++OJs0KBBxT448sgji+f5gVbunnvuueKE+/GSDzveOxT7pptuygYOHFi8UZk4cWK2evXqrJL2Q37imTx5cnbEEUcUw5CHDx+eTZ8+vezepO3r/5+X+++/v2Wd/I3H97///ewLX/hCduihh2YXXHBBcXKupP2wfv36Imzq6uqKv4ljjjkmu+6667KmpqasK/F1DACE6PL3gAAoTwIIgBACCIAQAgiAEAIIgBACCIAQAgiAEAIIgBACCIAQAgiAEAIIgBACCIAU4f8ASTxL6JoQBngAAAAASUVORK5CYII=",
"text/plain": [
"<Figure size 640x480 with 1 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"plt.imshow(x_train[2],cmap='gray')"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "a2893d80",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"array([[[0., 0., 0., ..., 0., 0., 0.],\n",
" [0., 0., 0., ..., 0., 0., 0.],\n",
" [0., 0., 0., ..., 0., 0., 0.],\n",
" ...,\n",
" [0., 0., 0., ..., 0., 0., 0.],\n",
" [0., 0., 0., ..., 0., 0., 0.],\n",
" [0., 0., 0., ..., 0., 0., 0.]],\n",
"\n",
" [[0., 0., 0., ..., 0., 0., 0.],\n",
" [0., 0., 0., ..., 0., 0., 0.],\n",
" [0., 0., 0., ..., 0., 0., 0.],\n",
" ...,\n",
" [0., 0., 0., ..., 0., 0., 0.],\n",
" [0., 0., 0., ..., 0., 0., 0.],\n",
" [0., 0., 0., ..., 0., 0., 0.]],\n",
"\n",
" [[0., 0., 0., ..., 0., 0., 0.],\n",
" [0., 0., 0., ..., 0., 0., 0.],\n",
" [0., 0., 0., ..., 0., 0., 0.],\n",
" ...,\n",
" [0., 0., 0., ..., 0., 0., 0.],\n",
" [0., 0., 0., ..., 0., 0., 0.],\n",
" [0., 0., 0., ..., 0., 0., 0.]],\n",
"\n",
" ...,\n",
"\n",
" [[0., 0., 0., ..., 0., 0., 0.],\n",
" [0., 0., 0., ..., 0., 0., 0.],\n",
" [0., 0., 0., ..., 0., 0., 0.],\n",
" ...,\n",
" [0., 0., 0., ..., 0., 0., 0.],\n",
" [0., 0., 0., ..., 0., 0., 0.],\n",
" [0., 0., 0., ..., 0., 0., 0.]],\n",
"\n",
" [[0., 0., 0., ..., 0., 0., 0.],\n",
" [0., 0., 0., ..., 0., 0., 0.],\n",
" [0., 0., 0., ..., 0., 0., 0.],\n",
" ...,\n",
" [0., 0., 0., ..., 0., 0., 0.],\n",
" [0., 0., 0., ..., 0., 0., 0.],\n",
" [0., 0., 0., ..., 0., 0., 0.]],\n",
"\n",
" [[0., 0., 0., ..., 0., 0., 0.],\n",
" [0., 0., 0., ..., 0., 0., 0.],\n",
" [0., 0., 0., ..., 0., 0., 0.],\n",
" ...,\n",
" [0., 0., 0., ..., 0., 0., 0.],\n",
" [0., 0., 0., ..., 0., 0., 0.],\n",
" [0., 0., 0., ..., 0., 0., 0.]]])"
]
},
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"x_train,x_test=x_train/255.0,x_test/255.0\n",
"x_train"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "9d3b090a",
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"c:\\Users\\najaf\\AppData\\Local\\Programs\\Python\\Python312\\Lib\\site-packages\\keras\\src\\layers\\reshaping\\flatten.py:37: UserWarning: Do not pass an `input_shape`/`input_dim` argument to a layer. When using Sequential models, prefer using an `Input(shape)` object as the first layer in the model instead.\n",
" super().__init__(**kwargs)\n"
]
},
{
"ename": "NameError",
"evalue": "name 'x_train' is not defined",
"output_type": "error",
"traceback": [
"\u001b[31m---------------------------------------------------------------------------\u001b[39m",
"\u001b[31mNameError\u001b[39m Traceback (most recent call last)",
"\u001b[36mCell\u001b[39m\u001b[36m \u001b[39m\u001b[32mIn[3]\u001b[39m\u001b[32m, line 11\u001b[39m\n\u001b[32m 3\u001b[39m model = keras.models.Sequential([\n\u001b[32m 4\u001b[39m keras.layers.Flatten(input_shape=(\u001b[32m28\u001b[39m,\u001b[32m28\u001b[39m)),\n\u001b[32m 5\u001b[39m keras.layers.Dense(\u001b[32m128\u001b[39m,activation=\u001b[33m'\u001b[39m\u001b[33mrelu\u001b[39m\u001b[33m'\u001b[39m),\n\u001b[32m (...)\u001b[39m\u001b[32m 8\u001b[39m \n\u001b[32m 9\u001b[39m ])\n\u001b[32m 10\u001b[39m model.compile(optimizer=\u001b[33m'\u001b[39m\u001b[33madam\u001b[39m\u001b[33m'\u001b[39m,loss=\u001b[33m'\u001b[39m\u001b[33msparse_categorical_crossentropy\u001b[39m\u001b[33m'\u001b[39m,metrics=[\u001b[33m'\u001b[39m\u001b[33maccuracy\u001b[39m\u001b[33m'\u001b[39m])\n\u001b[32m---> \u001b[39m\u001b[32m11\u001b[39m model.fit(\u001b[43mx_train\u001b[49m,y_train,epochs=\u001b[32m5\u001b[39m)\n",
"\u001b[31mNameError\u001b[39m: name 'x_train' is not defined"
]
}
],
"source": [
"import tensorflow as tf\n",
"from tensorflow import keras\n",
"model = keras.models.Sequential([\n",
" keras.layers.Flatten(input_shape=(28,28)),\n",
" keras.layers.Dense(128,activation='relu'),\n",
" keras.layers.Dense(10,activation='softmax')\n",
" \n",
" \n",
"])\n",
"model.compile(optimizer='adam',loss='sparse_categorical_crossentropy',metrics=['accuracy'])\n",
"model.fit(x_train,y_train,epochs=5)"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "dd5b05dd",
"metadata": {},
"outputs": [
{
"ename": "NameError",
"evalue": "name 'model' is not defined",
"output_type": "error",
"traceback": [
"\u001b[31m---------------------------------------------------------------------------\u001b[39m",
"\u001b[31mNameError\u001b[39m Traceback (most recent call last)",
"\u001b[36mCell\u001b[39m\u001b[36m \u001b[39m\u001b[32mIn[2]\u001b[39m\u001b[32m, line 1\u001b[39m\n\u001b[32m----> \u001b[39m\u001b[32m1\u001b[39m \u001b[43mmodel\u001b[49m.fit(x_train,y_train,epochs=\u001b[32m5\u001b[39m)\n",
"\u001b[31mNameError\u001b[39m: name 'model' is not defined"
]
}
],
"source": [
"model.fit(x_train,y_train,epochs=5)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "6a8d6734",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 2ms/step - accuracy: 0.9685 - loss: 0.1016\n",
"{test_accuracy*100:.2f}%\n"
]
}
],
"source": [
"test_loss,test_accuracy = model.evaluate(x_test,y_test)\n",
"print('{test_accuracy*100:.2f}%')\n"
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "a7179f4e",
"metadata": {},
"outputs": [
{
"ename": "NameError",
"evalue": "name 'model' is not defined",
"output_type": "error",
"traceback": [
"\u001b[31m---------------------------------------------------------------------------\u001b[39m",
"\u001b[31mNameError\u001b[39m Traceback (most recent call last)",
"\u001b[36mCell\u001b[39m\u001b[36m \u001b[39m\u001b[32mIn[1]\u001b[39m\u001b[32m, line 1\u001b[39m\n\u001b[32m----> \u001b[39m\u001b[32m1\u001b[39m \u001b[43mmodel\u001b[49m.fit(x_train,y_train,epochs=\u001b[33m'\u001b[39m\u001b[33m5\u001b[39m\u001b[33m'\u001b[39m)\n",
"\u001b[31mNameError\u001b[39m: name 'model' is not defined"
]
}
],
"source": [
"model.fit(x_train,y_train,epochs='5')"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.12.7"
}
},
"nbformat": 4,
"nbformat_minor": 5
}
|