File size: 2,019 Bytes
338964a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 |
{
"cells": [
{
"cell_type": "code",
"execution_count": null,
"id": "7c1f714e",
"metadata": {},
"outputs": [],
"source": [
"import tensorflow as tf\n",
"from tensorflow import keras\n",
"\n",
"import numpy as np\n",
"import matplotlib.pyplot as plt\n",
"\n",
"\n",
"(x_train,y_train),(x_test,y_test) = tf.keras.datasets.mnist.load_data()\n",
"\n",
"x_train,x_test = x_train/255.0,x_test/255.0\n",
"\n",
"import tensorflow as tf\n",
"from tensorflow import keras\n",
"model = keras.models.Sequential([\n",
" keras.layers.Flatten(input_shape=(28,28)),\n",
" keras.layers.Dense(128,activation='relu'),\n",
" keras.layers.Dense(10,activation='softmax')\n",
" \n",
" \n",
"])\n",
"\n",
"model.compile(optimizer='adam',loss='sparse_categorical_crossentropy',metrics=['accuracy'])\n",
"model.fit(x_train,y_train,epochs=5)\n",
"\n",
"model.save(\"mnist_model.keras\")\n",
"\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "af40fe46",
"metadata": {},
"outputs": [],
"source": [
"from huggingface_hub import HfApi\n",
"repo_id=\"turab31/mnist-model\"\n",
"api = HfApi()\n",
"api.create_repo(repo_id=repo_id,exist_ok=True)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "2bec5662",
"metadata": {},
"outputs": [],
"source": [
"from huggingface_hub import upload_folder\n",
"upload_folder(folder_path=\"\",repo_id=repo_id,repo_type=\"model\")"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.12.7"
}
},
"nbformat": 4,
"nbformat_minor": 5
}
|