hf-bert-finetuning / README.md
torchstack's picture
End of training
6c5cc5d verified
|
raw
history blame
2.9 kB
metadata
license: apache-2.0
base_model: google-bert/bert-base-uncased
tags:
  - generated_from_trainer
metrics:
  - accuracy
model-index:
  - name: hf-bert-finetuning
    results: []

hf-bert-finetuning

This model is a fine-tuned version of google-bert/bert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 2.2672
  • Accuracy: 0.805

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 100

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.392 4.0 500 1.1767 0.805
0.0421 8.0 1000 1.3555 0.814
0.0266 12.0 1500 1.7734 0.806
0.0066 16.0 2000 1.6149 0.818
0.0264 20.0 2500 1.4583 0.823
0.0284 24.0 3000 1.8117 0.794
0.0019 28.0 3500 1.8569 0.804
0.0336 32.0 4000 1.8200 0.801
0.0221 36.0 4500 1.8082 0.806
0.0195 40.0 5000 1.8102 0.81
0.007 44.0 5500 1.9712 0.82
0.0028 48.0 6000 1.8803 0.818
0.0017 52.0 6500 1.9739 0.82
0.0 56.0 7000 2.0171 0.821
0.019 60.0 7500 1.9017 0.805
0.0 64.0 8000 2.0914 0.801
0.0 68.0 8500 2.1453 0.799
0.0061 72.0 9000 2.2067 0.786
0.0009 76.0 9500 2.1612 0.799
0.0026 80.0 10000 2.1481 0.807
0.0 84.0 10500 2.1813 0.807
0.0 88.0 11000 2.2069 0.807
0.0 92.0 11500 2.2285 0.807
0.0 96.0 12000 2.2422 0.807
0.0004 100.0 12500 2.2672 0.805

Framework versions

  • Transformers 4.40.1
  • Pytorch 2.3.0
  • Datasets 2.19.0
  • Tokenizers 0.19.1