SentenceTransformer based on intfloat/multilingual-e5-large
This is a sentence-transformers model finetuned from intfloat/multilingual-e5-large on the cleaned-mongolian-dataset dataset. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: intfloat/multilingual-e5-large
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 1024 dimensions
- Similarity Function: Cosine Similarity
- Training Dataset:
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False, 'architecture': 'XLMRobertaModel'})
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
'өвлийн гутал худалдаж авахдаа бид хамгийн түрүүнд дараах гурван зүйлийг анхааралдаа авдаг. эхнийх нь мэдээж халтирдаггүй ул бол, хоёр дахь нь дулаан доторлогоо, харин гурав дахь нь олон жил эдлэгдэх сайн чанарын материал юм. энэ бүх шаардлагыг хангахын зэрэгцээ сүүлийн үеийн тренд бүхий загварлаг дизайнтай гэх маш том давуу талтай швейцарийн брэндийн гуталнууд саяхнаас улсын их дэлгүүрт худалдаалагдаж эхэлжээ. брэндийн монгол дахь албан ёсны дистрибютор \' нь мөн чанар ба загвараараа дэлхийд хүлээн зөвшөөрөгдсөн тансаг зэрэглэлийн брэндийн курткануудыг оруулж ирдэг бөгөөд уид-т нээсэн шинэ салбар дэлгүүртээ хоёр брэндийн бүтээгдэхүүнүүдийг хамтад нь санал болгож байна. хаяг: сэнтрал тауэр 2-р давхар, улсын их дэлгүүр 3-р давхар хуудсаар холбогдохыг хүсвэл энд дарна уу хэрхэн тууштай фитнессээр хичээллэж, эрүүл хооллох вэ? сүүлийн үеийн мэдээлэл авч байх би нууцлалын нөхцлийг зөвшөөрч байна 2011 2018 24 7. зохиогчийн эрх хуулиар хамгаалагдсан бүх нийтлэлийг харах дизайнер томми хилфигер хуудаснаа "хүсэл мөрөөдөлдөө үнэнч байж, түүнийхээ төлөө тэмцэн хойч үедээ үлгэр дуурайлал болж чаддаг хүмүүс надад хэдийнээс таалагдаж ирсэн. зендая бол тэдний тод жишээ ба түүнтэй хамтрахаар болсондоо таатай байна" хэмээн бичжээ. түүнчлэн тэдний хамтран гаргах цуглуулга америкина хэв маягтай байх болно гэдгийг дизайнер онцоллоо. бид бүгдийн хайртай пүүзний тренд өвлийн улирал руу шилжиж байна сөүлийн загварын долоо хоног дээрх хэрхэн тууштай фитнессээр хичээллэж, эрүүл хооллох вэ? сүүлийн үеийн мэдээлэл авч байх би нууцлалын нөхцлийг зөвшөөрч байна 2011 2018 24 7. зохиогчийн эрх хуулиар хамгаалагдсан и-мэйл хаягаа баталгаажуулна уу. таны гэсэн хаягт бид и-мэйл илгээсэн болно. уг и-мэйлд байрлах "баталгаажуулах" товчлуурыг дарна уу. дараагүй тохиолдолд зарын тухай ирсэн асуулт болон чатын мессэжний талаар бид мэдэгдэх боломжгүй юм.',
'энэ хэсгийг 2671.4.гаалийн удирдах төв байгууллагын даргыг монгол улсын засгийн газрын тухай хуулийн 183 дугаар зүйлийн 2 дахь хэсэгт заасны дагуу томилж, чөлөөлнө. гэж 2017 оны 12 дугаар сарын 07-ны өдрийн хуулиар өөрчлөн найруулсан бөгөөд 2019 оны 01 дүгээр сарын 01-ний өдрөөс эхлэн дагаж мөрдөнө. хэвлэл мэдээллийн хэрэгслийн тоо буурч, тэдний 78 хувийг компани, хувь хүн эзэмшиж байна хотын дарга с.батболд сэтгүүлчдийн ордон барих газрыг шийдвэрлэлээ маш чухал зөвлөгөө, үүнийг хэрэглээд хагарсан хөлийн өсгийг 7-хон хоногийн дотор эмчлээрэй! та мэдээг у.хүрэлсүх: утаагаар улс төр хийж байгаа нь үнэн найздаа илгээнэ: бнсу-ын эся-наас 800 иргэн виз мэдүүлэхдээ материалаа хуурамчаар үйлдсэн байж болзошгүй тул шалгуулах хүсэлтээ илэрхийлжээ. энэ дагуу эрүүгийн цагдаагийн албанаас дээрх иргэдийн тал хувийнх нь бичиг баримтыг шалгахад төрийн байгууллагын болон тбб-ын тодорхойлолт, дансны хуулга, мэдүүлэг, банканд таван сая төгрөг байршуулсан талаарх гэрээ, ндг-ын тодорхойлолт, муис, шутис, хүмүүнлэгийн их сургуулийн оюутан мөн гэсэн тодорхойлолтыг хуурамчаар үйлдсэн нь дийлэнх байжээ.',
'энэ нь хүмүүсийн оюун ухааныг ямар нэгэн аргаар хооронд нь холбож, шоргоолж, зөгий шиг бүлээр амьдрах шавьж мэт болгох хувилбар. зөгнөлт зохиолд дүрслэгдсэн жишээ нь "оддын аялал" цувралын борг юм. ийм нөхцөлд хүний хувийн бодол санаа оршин байхгүй бөгөөд бүхий л үйлдэл бүлийн шаардлагын дагуу, эсвэл хатан зөгий мэт хэн нэгний тушаалын дагуу хийгдэнэ. 20-р зууны сүүлийн хагаст үзэгдсэн дарангуйлан захирах (тоталитар) дэглэм бүлийн оюун санаатай төстэй боловч бодит байдалд түүнийг хэрэгжүүлэх технологи байгаагүй нь олон үндэстний хувьд аз болсон. гэхдээ цаашид, алс ирээдүйд юу болох бол. наноробот, тархинд суулгах төхөөрөмжийг ашиглан хүний бодол санаа, үйлдлийг захирах технологи аль хэдийн, хаа нэгтээ нууцаар хийгдэж эхэлсэн ч байж магадгүй. шинжлэх ухаан, технологийн хөгжлийн үр дүнд эрэгтэй, эмэгтэй эсэхээс хамааралгүйгээр үр удмаа үлдээх чадвар эзэмшвэл хүйсээр ялгагдах шаардлагагүй болно. хүйсгүй шинэ хүн эрэгтэй, эмэгтэйн аль алины давуу талыг шингээж, аль нэгнийх нь шинж давамгайлах байдал үгүй болно. бас ирээдүйд эрэгтэй ч биш, эмэгтэй ч биш гуравдагч хүйс бий болж, тухайн нөхцөл байдлаас хамааран аль нэгэнд нь шилжих чадвартай хүн бий болж магадгүй гэсэн таамаглал бий. өнөөгийн ямар ч хүний бие үржлийн эрхтнүүдийг эс тооцвол эр, эм шинжийг давхар агуулж, гол ялгааг дааврын систем зохицуулж байдгийг дурдахад илүүдэхгүй биз ээ.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities)
# tensor([[ 1.0000, -0.1414, -0.1081],
# [-0.1414, 1.0000, 0.9738],
# [-0.1081, 0.9738, 1.0000]])
Training Details
Training Dataset
cleaned-mongolian-dataset
- Dataset: cleaned-mongolian-dataset at e350efd
- Size: 997,125 training samples
- Columns:
text
andinput_ids
- Approximate statistics based on the first 1000 samples:
text input_ids type string list details - min: 27 tokens
- mean: 424.66 tokens
- max: 512 tokens
- min: 59 elements
- mean: 798.31 elements
- max: 1024 elements
- Samples:
text input_ids аюулгүй байдлын сургалтын агуулга нь замын хөдөлгөөний, байгалийн гамшигт үзэгдлийн, ахуйн болзошгүй осол, гэмтлээс өөрийгөө болон бусдыг хамгаалах, сэтгэцийн болон мансууруулах бодисын хор уршиг, аюул, заналыг ухамсарлах, цахим орчинд гэмт хэргийн хохирогч болохоос урьдчилан сэргийлэх гэх зэрэг өргөн агуулгаар тодорхойлогдоно. өнгөрсөн хугацаанд бид мэдлэг олгоход түлхүү анхаарч, хүүхдийг хүн болгож хүнийг төлөвшүүлэх тал дээр бага анхаарч ирсэн. ийм учраас хүүхдийг ёс суртахууны хувьд төлөвшүүлэх нь манай боловсролын анхаарч шийдвэрлэх ёстой нэгэн үндсэн асуудал болоод байна. амьдрах ухааны сургалтын агуулга нь энэ л шаардлага, хэрэгцээгээр тодорхойлогдоно. багшийн дүн үнэн, бодитой байдаг ил, тод нээлттэй шалгалтын систем, тогтолцоотой болно. монголын боловсролын эмзэг, хамгийн сул зүйлийн нэг бол үнэлгээний асуудал болоод байна. манай боловсролын үнэлгээний шаардлага, шалгуур, хэмжигдэхүүн, арга зүй, тогтолцоо оновчтой бус, ойлгомжгүй, зарим тохиолдолд цаасан дээр л байдаг ор нэр т...
[252480, 253767, 254971, 251792, 210, ...]
уих-ын гишүүн, засгийн газрын гишүүн, байгаль орчин, аялал жуулчлалын сайд н.цэрэнбат монгол улсын засгийн газраас санаачилсан гаалийн албан татвараас чөлөөлөх тухай болон нэмэгдс . барилгын туслах ажилтан яаралтай ажилд авна барилгын туслах ажилтан яаралтай ажилд авна. цалин өдрийн 25.000 утас: 8800-8044 шинэхэн өглөөний мэнд. өчигдөр нэг сайн найзынхаа төрсөн өдөрт очлоо л доо. тэгсэн эхнэрээ дагуулаад иржээ. бид нар уул нь урьдчилж тэмдэглэж байгаан яг өдөр нь биш тэгсэн чинь хөөрхий муу найзыг маань бид нарын хажууд л харцаараа муухай харж байснаа сүүлдээ үгээр муухай загинаад л эхлэхийн. уул нь нөхөр нь найзуудтайгаа төрсөн өдрөө тэмдэглэж байгаан ш дээ. тэрийг ер ойлгоогүймуу хаашайн эсвэл угаасаа тийм юм уу бүү мэд. хамгийн гол нь олон хүний дунд ялангуяа найзуудынх нь дунд битгий эвгүй байдалд оруулж бай л даа. хэ хэ.хүүхнүүд ихэвчлэн ингэж тэнэгтээд алдаад байдаг юм шүү дээ харин тий өөрийгөө хаана хэнтэй байгаагаа жаахан мэдрэх хэрэгтэй ш дээ. сэтгэл хангалуун байгаа үгүйг нь...
[252636, 257430, 16, 250991, 210, ...]
төмрийн хүдрийн дэлхийн нийт олборлолт 1 . төмөр 24-41 , фосфорын . төмөр 38,6 хүртэл, алт . этгүүлчдэд зориулсан гарын авлага - 1 монголбанк этгүүлчдэд зориулсан гарын авлага (анхан шатны сургалт) олон нийтийн боловсрол, мэдээллийн төв монгол улс, улаанбаатар хот, бага тойруу-3, 15160, монгол хүнд хямд тийз-1 - . нүүр хуудас: улс төр: эдийн засаг: дэлхий дахинд: урлаг: спорт: зөвлөгөө: технологи: ярилцлага өнгөт болон ховор металын газрын гүний . хүдэр олборлолт, . алт, зэс, төмөр гээд бүгд . эдийн засаг санхүүгийн хэллэг - стр.7 төмөр замын хамтын ажиллагааг зохион . лэх урт хугацааны зөвшин тохиролцсон гол . 2017 он уул уурхайн салбарт монголын нийгэм эдийн засгийн газарзүй - . асуулт 38 монгол улсын алт, . металын уурхайнууд . гол төв нь төмөр замаа . . монгол улсын стандартын жагсаалт 2010 үйл ажиллагааны хүрээгээр ангилсан жагсаалт 01 нийтлэг зүйл,. гол түүхий эдийн дэлхийн зах . алт зэрэг металын үнэ буурахаар байна. . төмөр зам, . шаамарын төмөр замын . мөн налайх нь эргэн тойр...
[253491, 258319, 257491, 210, 256338, ...]
- Loss:
MultipleNegativesRankingLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim" }
Training Hyperparameters
Non-Default Hyperparameters
gradient_accumulation_steps
: 8learning_rate
: 2e-05num_train_epochs
: 1warmup_steps
: 500fp16
: True
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: noprediction_loss_only
: Trueper_device_train_batch_size
: 8per_device_eval_batch_size
: 8per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 8eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 2e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 1max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.0warmup_steps
: 500log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Truefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torch_fusedoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsehub_revision
: Nonegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseliger_kernel_config
: Noneeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: proportionalrouter_mapping
: {}learning_rate_mapping
: {}
Training Logs
Click to expand
Epoch | Step | Training Loss |
---|---|---|
0.0006 | 10 | 2.0918 |
0.0013 | 20 | 2.0914 |
0.0019 | 30 | 2.0855 |
0.0026 | 40 | 2.0858 |
0.0032 | 50 | 2.0894 |
0.0039 | 60 | 2.0796 |
0.0045 | 70 | 2.0779 |
0.0051 | 80 | 2.0703 |
0.0058 | 90 | 2.0624 |
0.0064 | 100 | 2.0596 |
0.0071 | 110 | 2.0403 |
0.0077 | 120 | 1.9946 |
0.0083 | 130 | 1.9471 |
0.0090 | 140 | 1.8538 |
0.0096 | 150 | 1.7965 |
0.0103 | 160 | 1.7491 |
0.0109 | 170 | 1.6258 |
0.0116 | 180 | 1.6156 |
0.0122 | 190 | 1.6384 |
0.0128 | 200 | 1.5583 |
0.0135 | 210 | 1.4437 |
0.0141 | 220 | 1.4157 |
0.0148 | 230 | 1.3255 |
0.0154 | 240 | 1.2985 |
0.0160 | 250 | 1.1824 |
0.0167 | 260 | 1.1609 |
0.0173 | 270 | 1.0169 |
0.0180 | 280 | 0.9953 |
0.0186 | 290 | 0.8542 |
0.0193 | 300 | 0.807 |
0.0199 | 310 | 0.7492 |
0.0205 | 320 | 0.7984 |
0.0212 | 330 | 0.632 |
0.0218 | 340 | 0.6511 |
0.0225 | 350 | 0.6407 |
0.0231 | 360 | 0.5841 |
0.0237 | 370 | 0.5787 |
0.0244 | 380 | 0.4979 |
0.0250 | 390 | 0.409 |
0.0257 | 400 | 0.4344 |
0.0263 | 410 | 0.4355 |
0.0270 | 420 | 0.4358 |
0.0276 | 430 | 0.3418 |
0.0282 | 440 | 0.407 |
0.0289 | 450 | 0.3784 |
0.0295 | 460 | 0.3438 |
0.0302 | 470 | 0.3102 |
0.0308 | 480 | 0.3173 |
0.0315 | 490 | 0.3096 |
0.0321 | 500 | 0.345 |
0.0327 | 510 | 0.3417 |
0.0334 | 520 | 0.2927 |
0.0340 | 530 | 0.2624 |
0.0347 | 540 | 0.2602 |
0.0353 | 550 | 0.3068 |
0.0359 | 560 | 0.2405 |
0.0366 | 570 | 0.2651 |
0.0372 | 580 | 0.3062 |
0.0379 | 590 | 0.2741 |
0.0385 | 600 | 0.2483 |
0.0392 | 610 | 0.1963 |
0.0398 | 620 | 0.2262 |
0.0404 | 630 | 0.1793 |
0.0411 | 640 | 0.2089 |
0.0417 | 650 | 0.2036 |
0.0424 | 660 | 0.2127 |
0.0430 | 670 | 0.2343 |
0.0436 | 680 | 0.1784 |
0.0443 | 690 | 0.149 |
0.0449 | 700 | 0.1537 |
0.0456 | 710 | 0.1234 |
0.0462 | 720 | 0.1871 |
0.0469 | 730 | 0.1772 |
0.0475 | 740 | 0.196 |
0.0481 | 750 | 0.1647 |
0.0488 | 760 | 0.1741 |
0.0494 | 770 | 0.1501 |
0.0501 | 780 | 0.1812 |
0.0507 | 790 | 0.1599 |
0.0513 | 800 | 0.1563 |
0.0520 | 810 | 0.1131 |
0.0526 | 820 | 0.1872 |
0.0533 | 830 | 0.1696 |
0.0539 | 840 | 0.1668 |
0.0546 | 850 | 0.1488 |
0.0552 | 860 | 0.1503 |
0.0558 | 870 | 0.1382 |
0.0565 | 880 | 0.1764 |
0.0571 | 890 | 0.1459 |
0.0578 | 900 | 0.1202 |
0.0584 | 910 | 0.1153 |
0.0590 | 920 | 0.1428 |
0.0597 | 930 | 0.1347 |
0.0603 | 940 | 0.153 |
0.0610 | 950 | 0.123 |
0.0616 | 960 | 0.1075 |
0.0623 | 970 | 0.1322 |
0.0629 | 980 | 0.1363 |
0.0635 | 990 | 0.1287 |
0.0642 | 1000 | 0.1466 |
0.0648 | 1010 | 0.1341 |
0.0655 | 1020 | 0.1211 |
0.0661 | 1030 | 0.1268 |
0.0668 | 1040 | 0.0942 |
0.0674 | 1050 | 0.147 |
0.0680 | 1060 | 0.1461 |
0.0687 | 1070 | 0.117 |
0.0693 | 1080 | 0.1106 |
0.0700 | 1090 | 0.114 |
0.0706 | 1100 | 0.0784 |
0.0712 | 1110 | 0.1158 |
0.0719 | 1120 | 0.1098 |
0.0725 | 1130 | 0.1484 |
0.0732 | 1140 | 0.1496 |
0.0738 | 1150 | 0.1267 |
0.0745 | 1160 | 0.1293 |
0.0751 | 1170 | 0.1303 |
0.0757 | 1180 | 0.0987 |
0.0764 | 1190 | 0.1186 |
0.0770 | 1200 | 0.1224 |
0.0777 | 1210 | 0.1084 |
0.0783 | 1220 | 0.0838 |
0.0789 | 1230 | 0.0924 |
0.0796 | 1240 | 0.1233 |
0.0802 | 1250 | 0.0937 |
0.0809 | 1260 | 0.0755 |
0.0815 | 1270 | 0.0767 |
0.0822 | 1280 | 0.087 |
0.0828 | 1290 | 0.0841 |
0.0834 | 1300 | 0.0691 |
0.0841 | 1310 | 0.0668 |
0.0847 | 1320 | 0.0723 |
0.0854 | 1330 | 0.1032 |
0.0860 | 1340 | 0.0815 |
0.0866 | 1350 | 0.0913 |
0.0873 | 1360 | 0.0752 |
0.0879 | 1370 | 0.0811 |
0.0886 | 1380 | 0.1094 |
0.0892 | 1390 | 0.0858 |
0.0899 | 1400 | 0.0855 |
0.0905 | 1410 | 0.0782 |
0.0911 | 1420 | 0.0917 |
0.0918 | 1430 | 0.1413 |
0.0924 | 1440 | 0.0994 |
0.0931 | 1450 | 0.0913 |
0.0937 | 1460 | 0.1086 |
0.0944 | 1470 | 0.1467 |
0.0950 | 1480 | 0.0818 |
0.0956 | 1490 | 0.0729 |
0.0963 | 1500 | 0.0647 |
0.0969 | 1510 | 0.0977 |
0.0976 | 1520 | 0.1096 |
0.0982 | 1530 | 0.0933 |
0.0988 | 1540 | 0.0839 |
0.0995 | 1550 | 0.1008 |
0.1001 | 1560 | 0.0841 |
0.1008 | 1570 | 0.0721 |
0.1014 | 1580 | 0.0918 |
0.1021 | 1590 | 0.0836 |
0.1027 | 1600 | 0.0638 |
0.1033 | 1610 | 0.0832 |
0.1040 | 1620 | 0.0867 |
0.1046 | 1630 | 0.0698 |
0.1053 | 1640 | 0.0789 |
0.1059 | 1650 | 0.0778 |
0.1065 | 1660 | 0.0621 |
0.1072 | 1670 | 0.0589 |
0.1078 | 1680 | 0.0832 |
0.1085 | 1690 | 0.0944 |
0.1091 | 1700 | 0.0743 |
0.1098 | 1710 | 0.0946 |
0.1104 | 1720 | 0.0796 |
0.1110 | 1730 | 0.0782 |
0.1117 | 1740 | 0.0713 |
0.1123 | 1750 | 0.0783 |
0.1130 | 1760 | 0.0533 |
0.1136 | 1770 | 0.064 |
0.1142 | 1780 | 0.0537 |
0.1149 | 1790 | 0.0759 |
0.1155 | 1800 | 0.0611 |
0.1162 | 1810 | 0.0564 |
0.1168 | 1820 | 0.0731 |
0.1175 | 1830 | 0.0794 |
0.1181 | 1840 | 0.0809 |
0.1187 | 1850 | 0.0462 |
0.1194 | 1860 | 0.0746 |
0.1200 | 1870 | 0.0618 |
0.1207 | 1880 | 0.0814 |
0.1213 | 1890 | 0.0993 |
0.1220 | 1900 | 0.0684 |
0.1226 | 1910 | 0.057 |
0.1232 | 1920 | 0.0593 |
0.1239 | 1930 | 0.0644 |
0.1245 | 1940 | 0.0463 |
0.1252 | 1950 | 0.0758 |
0.1258 | 1960 | 0.0722 |
0.1264 | 1970 | 0.0673 |
0.1271 | 1980 | 0.0566 |
0.1277 | 1990 | 0.0653 |
0.1284 | 2000 | 0.048 |
0.1290 | 2010 | 0.0777 |
0.1297 | 2020 | 0.0692 |
0.1303 | 2030 | 0.089 |
0.1309 | 2040 | 0.0683 |
0.1316 | 2050 | 0.0427 |
0.1322 | 2060 | 0.0698 |
0.1329 | 2070 | 0.0688 |
0.1335 | 2080 | 0.0684 |
0.1341 | 2090 | 0.0947 |
0.1348 | 2100 | 0.0672 |
0.1354 | 2110 | 0.0548 |
0.1361 | 2120 | 0.0721 |
0.1367 | 2130 | 0.0579 |
0.1374 | 2140 | 0.0478 |
0.1380 | 2150 | 0.0382 |
0.1386 | 2160 | 0.0493 |
0.1393 | 2170 | 0.0722 |
0.1399 | 2180 | 0.0661 |
0.1406 | 2190 | 0.0808 |
0.1412 | 2200 | 0.0597 |
0.1418 | 2210 | 0.0823 |
0.1425 | 2220 | 0.053 |
0.1431 | 2230 | 0.0458 |
0.1438 | 2240 | 0.0436 |
0.1444 | 2250 | 0.0694 |
0.1451 | 2260 | 0.052 |
0.1457 | 2270 | 0.0585 |
0.1463 | 2280 | 0.0548 |
0.1470 | 2290 | 0.0442 |
0.1476 | 2300 | 0.0512 |
0.1483 | 2310 | 0.0504 |
0.1489 | 2320 | 0.0486 |
0.1495 | 2330 | 0.0499 |
0.1502 | 2340 | 0.094 |
0.1508 | 2350 | 0.052 |
0.1515 | 2360 | 0.0529 |
0.1521 | 2370 | 0.054 |
0.1528 | 2380 | 0.0693 |
0.1534 | 2390 | 0.0591 |
0.1540 | 2400 | 0.0525 |
0.1547 | 2410 | 0.0603 |
0.1553 | 2420 | 0.0453 |
0.1560 | 2430 | 0.0684 |
0.1566 | 2440 | 0.0574 |
0.1573 | 2450 | 0.0694 |
0.1579 | 2460 | 0.0577 |
0.1585 | 2470 | 0.0671 |
0.1592 | 2480 | 0.0528 |
0.1598 | 2490 | 0.0632 |
0.1605 | 2500 | 0.048 |
0.1611 | 2510 | 0.0645 |
0.1617 | 2520 | 0.0493 |
0.1624 | 2530 | 0.0529 |
0.1630 | 2540 | 0.0462 |
0.1637 | 2550 | 0.0772 |
0.1643 | 2560 | 0.049 |
0.1650 | 2570 | 0.0701 |
0.1656 | 2580 | 0.058 |
0.1662 | 2590 | 0.0219 |
0.1669 | 2600 | 0.0649 |
0.1675 | 2610 | 0.0419 |
0.1682 | 2620 | 0.0495 |
0.1688 | 2630 | 0.0531 |
0.1694 | 2640 | 0.05 |
0.1701 | 2650 | 0.0582 |
0.1707 | 2660 | 0.0755 |
0.1714 | 2670 | 0.0713 |
0.1720 | 2680 | 0.0456 |
0.1727 | 2690 | 0.0634 |
0.1733 | 2700 | 0.0523 |
0.1739 | 2710 | 0.0418 |
0.1746 | 2720 | 0.0447 |
0.1752 | 2730 | 0.0424 |
0.1759 | 2740 | 0.0394 |
0.1765 | 2750 | 0.0422 |
0.1771 | 2760 | 0.0495 |
0.1778 | 2770 | 0.0503 |
0.1784 | 2780 | 0.0483 |
0.1791 | 2790 | 0.0438 |
0.1797 | 2800 | 0.0591 |
0.1804 | 2810 | 0.0602 |
0.1810 | 2820 | 0.0462 |
0.1816 | 2830 | 0.0402 |
0.1823 | 2840 | 0.0529 |
0.1829 | 2850 | 0.0726 |
0.1836 | 2860 | 0.034 |
0.1842 | 2870 | 0.0533 |
0.1849 | 2880 | 0.0405 |
0.1855 | 2890 | 0.0766 |
0.1861 | 2900 | 0.0484 |
0.1868 | 2910 | 0.0373 |
0.1874 | 2920 | 0.059 |
0.1881 | 2930 | 0.0484 |
0.1887 | 2940 | 0.0651 |
0.1893 | 2950 | 0.0347 |
0.1900 | 2960 | 0.0415 |
0.1906 | 2970 | 0.0427 |
0.1913 | 2980 | 0.037 |
0.1919 | 2990 | 0.0467 |
0.1926 | 3000 | 0.0516 |
0.1932 | 3010 | 0.0407 |
0.1938 | 3020 | 0.0321 |
0.1945 | 3030 | 0.0609 |
0.1951 | 3040 | 0.0466 |
0.1958 | 3050 | 0.0491 |
0.1964 | 3060 | 0.0524 |
0.1970 | 3070 | 0.038 |
0.1977 | 3080 | 0.0488 |
0.1983 | 3090 | 0.0413 |
0.1990 | 3100 | 0.0397 |
0.1996 | 3110 | 0.0371 |
0.2003 | 3120 | 0.0415 |
0.2009 | 3130 | 0.0588 |
0.2015 | 3140 | 0.0596 |
0.2022 | 3150 | 0.0498 |
0.2028 | 3160 | 0.0404 |
0.2035 | 3170 | 0.0672 |
0.2041 | 3180 | 0.0585 |
0.2047 | 3190 | 0.0632 |
0.2054 | 3200 | 0.0323 |
0.2060 | 3210 | 0.0596 |
0.2067 | 3220 | 0.0532 |
0.2073 | 3230 | 0.0511 |
0.2080 | 3240 | 0.0434 |
0.2086 | 3250 | 0.0312 |
0.2092 | 3260 | 0.0552 |
0.2099 | 3270 | 0.0163 |
0.2105 | 3280 | 0.0367 |
0.2112 | 3290 | 0.033 |
0.2118 | 3300 | 0.0334 |
0.2125 | 3310 | 0.0266 |
0.2131 | 3320 | 0.0276 |
0.2137 | 3330 | 0.0535 |
0.2144 | 3340 | 0.0344 |
0.2150 | 3350 | 0.0301 |
0.2157 | 3360 | 0.0316 |
0.2163 | 3370 | 0.0445 |
0.2169 | 3380 | 0.0493 |
0.2176 | 3390 | 0.031 |
0.2182 | 3400 | 0.04 |
0.2189 | 3410 | 0.0432 |
0.2195 | 3420 | 0.0289 |
0.2202 | 3430 | 0.0399 |
0.2208 | 3440 | 0.0348 |
0.2214 | 3450 | 0.0483 |
0.2221 | 3460 | 0.0448 |
0.2227 | 3470 | 0.0497 |
0.2234 | 3480 | 0.0422 |
0.2240 | 3490 | 0.0509 |
0.2246 | 3500 | 0.0457 |
0.2253 | 3510 | 0.0188 |
0.2259 | 3520 | 0.0472 |
0.2266 | 3530 | 0.0233 |
0.2272 | 3540 | 0.0694 |
0.2279 | 3550 | 0.0357 |
0.2285 | 3560 | 0.0224 |
0.2291 | 3570 | 0.043 |
0.2298 | 3580 | 0.0266 |
0.2304 | 3590 | 0.0493 |
0.2311 | 3600 | 0.04 |
0.2317 | 3610 | 0.0494 |
0.2323 | 3620 | 0.0399 |
0.2330 | 3630 | 0.0386 |
0.2336 | 3640 | 0.0418 |
0.2343 | 3650 | 0.0516 |
0.2349 | 3660 | 0.0575 |
0.2356 | 3670 | 0.0639 |
0.2362 | 3680 | 0.0376 |
0.2368 | 3690 | 0.044 |
0.2375 | 3700 | 0.0359 |
0.2381 | 3710 | 0.0371 |
0.2388 | 3720 | 0.0485 |
0.2394 | 3730 | 0.0349 |
0.2400 | 3740 | 0.048 |
0.2407 | 3750 | 0.0355 |
0.2413 | 3760 | 0.0501 |
0.2420 | 3770 | 0.0579 |
0.2426 | 3780 | 0.0429 |
0.2433 | 3790 | 0.0421 |
0.2439 | 3800 | 0.0423 |
0.2445 | 3810 | 0.063 |
0.2452 | 3820 | 0.0523 |
0.2458 | 3830 | 0.0345 |
0.2465 | 3840 | 0.0589 |
0.2471 | 3850 | 0.0435 |
0.2478 | 3860 | 0.0328 |
0.2484 | 3870 | 0.0237 |
0.2490 | 3880 | 0.0421 |
0.2497 | 3890 | 0.0403 |
0.2503 | 3900 | 0.0303 |
0.2510 | 3910 | 0.037 |
0.2516 | 3920 | 0.0607 |
0.2522 | 3930 | 0.0564 |
0.2529 | 3940 | 0.0416 |
0.2535 | 3950 | 0.0606 |
0.2542 | 3960 | 0.0284 |
0.2548 | 3970 | 0.0302 |
0.2555 | 3980 | 0.0504 |
0.2561 | 3990 | 0.025 |
0.2567 | 4000 | 0.0451 |
0.2574 | 4010 | 0.0376 |
0.2580 | 4020 | 0.0357 |
0.2587 | 4030 | 0.0509 |
0.2593 | 4040 | 0.0343 |
0.2599 | 4050 | 0.0535 |
0.2606 | 4060 | 0.0481 |
0.2612 | 4070 | 0.0297 |
0.2619 | 4080 | 0.0371 |
0.2625 | 4090 | 0.0469 |
0.2632 | 4100 | 0.0612 |
0.2638 | 4110 | 0.0599 |
0.2644 | 4120 | 0.0275 |
0.2651 | 4130 | 0.0306 |
0.2657 | 4140 | 0.0321 |
0.2664 | 4150 | 0.0463 |
0.2670 | 4160 | 0.029 |
0.2676 | 4170 | 0.0323 |
0.2683 | 4180 | 0.0542 |
0.2689 | 4190 | 0.034 |
0.2696 | 4200 | 0.0482 |
0.2702 | 4210 | 0.0441 |
0.2709 | 4220 | 0.0316 |
0.2715 | 4230 | 0.0362 |
0.2721 | 4240 | 0.0351 |
0.2728 | 4250 | 0.0344 |
0.2734 | 4260 | 0.0301 |
0.2741 | 4270 | 0.0457 |
0.2747 | 4280 | 0.0301 |
0.2754 | 4290 | 0.0341 |
0.2760 | 4300 | 0.0333 |
0.2766 | 4310 | 0.0293 |
0.2773 | 4320 | 0.0262 |
0.2779 | 4330 | 0.0259 |
0.2786 | 4340 | 0.0203 |
0.2792 | 4350 | 0.0332 |
0.2798 | 4360 | 0.0387 |
0.2805 | 4370 | 0.026 |
0.2811 | 4380 | 0.0349 |
0.2818 | 4390 | 0.0297 |
0.2824 | 4400 | 0.0311 |
0.2831 | 4410 | 0.0344 |
0.2837 | 4420 | 0.0278 |
0.2843 | 4430 | 0.038 |
0.2850 | 4440 | 0.0408 |
0.2856 | 4450 | 0.0403 |
0.2863 | 4460 | 0.0487 |
0.2869 | 4470 | 0.0401 |
0.2875 | 4480 | 0.0323 |
0.2882 | 4490 | 0.036 |
0.2888 | 4500 | 0.0449 |
0.2895 | 4510 | 0.0287 |
0.2901 | 4520 | 0.0585 |
0.2908 | 4530 | 0.0351 |
0.2914 | 4540 | 0.0496 |
0.2920 | 4550 | 0.0353 |
0.2927 | 4560 | 0.0378 |
0.2933 | 4570 | 0.0408 |
0.2940 | 4580 | 0.0328 |
0.2946 | 4590 | 0.0546 |
0.2952 | 4600 | 0.0305 |
0.2959 | 4610 | 0.0302 |
0.2965 | 4620 | 0.0314 |
0.2972 | 4630 | 0.036 |
0.2978 | 4640 | 0.0299 |
0.2985 | 4650 | 0.039 |
0.2991 | 4660 | 0.0524 |
0.2997 | 4670 | 0.0407 |
0.3004 | 4680 | 0.0419 |
0.3010 | 4690 | 0.0489 |
0.3017 | 4700 | 0.0305 |
0.3023 | 4710 | 0.0261 |
0.3030 | 4720 | 0.039 |
0.3036 | 4730 | 0.0238 |
0.3042 | 4740 | 0.0348 |
0.3049 | 4750 | 0.0601 |
0.3055 | 4760 | 0.0209 |
0.3062 | 4770 | 0.0273 |
0.3068 | 4780 | 0.0309 |
0.3074 | 4790 | 0.0249 |
0.3081 | 4800 | 0.0445 |
0.3087 | 4810 | 0.0185 |
0.3094 | 4820 | 0.0334 |
0.3100 | 4830 | 0.0408 |
0.3107 | 4840 | 0.0486 |
0.3113 | 4850 | 0.0245 |
0.3119 | 4860 | 0.0282 |
0.3126 | 4870 | 0.0367 |
0.3132 | 4880 | 0.0286 |
0.3139 | 4890 | 0.0262 |
0.3145 | 4900 | 0.0471 |
0.3151 | 4910 | 0.0278 |
0.3158 | 4920 | 0.0422 |
0.3164 | 4930 | 0.0448 |
0.3171 | 4940 | 0.0291 |
0.3177 | 4950 | 0.024 |
0.3184 | 4960 | 0.0164 |
0.3190 | 4970 | 0.0408 |
0.3196 | 4980 | 0.0351 |
0.3203 | 4990 | 0.0592 |
0.3209 | 5000 | 0.0245 |
0.3216 | 5010 | 0.0341 |
0.3222 | 5020 | 0.0312 |
0.3228 | 5030 | 0.0314 |
0.3235 | 5040 | 0.0248 |
0.3241 | 5050 | 0.0245 |
0.3248 | 5060 | 0.0333 |
0.3254 | 5070 | 0.0327 |
0.3261 | 5080 | 0.0415 |
0.3267 | 5090 | 0.0412 |
0.3273 | 5100 | 0.0333 |
0.3280 | 5110 | 0.0509 |
0.3286 | 5120 | 0.0313 |
0.3293 | 5130 | 0.026 |
0.3299 | 5140 | 0.0238 |
0.3305 | 5150 | 0.0261 |
0.3312 | 5160 | 0.0362 |
0.3318 | 5170 | 0.0172 |
0.3325 | 5180 | 0.033 |
0.3331 | 5190 | 0.0464 |
0.3338 | 5200 | 0.02 |
0.3344 | 5210 | 0.0331 |
0.3350 | 5220 | 0.0236 |
0.3357 | 5230 | 0.0427 |
0.3363 | 5240 | 0.0456 |
0.3370 | 5250 | 0.043 |
0.3376 | 5260 | 0.0433 |
0.3383 | 5270 | 0.0302 |
0.3389 | 5280 | 0.0213 |
0.3395 | 5290 | 0.0288 |
0.3402 | 5300 | 0.0263 |
0.3408 | 5310 | 0.0103 |
0.3415 | 5320 | 0.0375 |
0.3421 | 5330 | 0.0234 |
0.3427 | 5340 | 0.0337 |
0.3434 | 5350 | 0.0278 |
0.3440 | 5360 | 0.0292 |
0.3447 | 5370 | 0.0336 |
0.3453 | 5380 | 0.0386 |
0.3460 | 5390 | 0.0349 |
0.3466 | 5400 | 0.0434 |
0.3472 | 5410 | 0.0409 |
0.3479 | 5420 | 0.0175 |
0.3485 | 5430 | 0.0244 |
0.3492 | 5440 | 0.0322 |
0.3498 | 5450 | 0.0469 |
0.3504 | 5460 | 0.0376 |
0.3511 | 5470 | 0.0206 |
0.3517 | 5480 | 0.0215 |
0.3524 | 5490 | 0.0231 |
0.3530 | 5500 | 0.0414 |
0.3537 | 5510 | 0.0278 |
0.3543 | 5520 | 0.0201 |
0.3549 | 5530 | 0.0196 |
0.3556 | 5540 | 0.0395 |
0.3562 | 5550 | 0.0419 |
0.3569 | 5560 | 0.0238 |
0.3575 | 5570 | 0.0279 |
0.3581 | 5580 | 0.0429 |
0.3588 | 5590 | 0.031 |
0.3594 | 5600 | 0.0312 |
0.3601 | 5610 | 0.0281 |
0.3607 | 5620 | 0.0218 |
0.3614 | 5630 | 0.0291 |
0.3620 | 5640 | 0.0385 |
0.3626 | 5650 | 0.0367 |
0.3633 | 5660 | 0.0181 |
0.3639 | 5670 | 0.0211 |
0.3646 | 5680 | 0.0218 |
0.3652 | 5690 | 0.0343 |
0.3659 | 5700 | 0.0285 |
0.3665 | 5710 | 0.0343 |
0.3671 | 5720 | 0.0289 |
0.3678 | 5730 | 0.0367 |
0.3684 | 5740 | 0.0265 |
0.3691 | 5750 | 0.0476 |
0.3697 | 5760 | 0.028 |
0.3703 | 5770 | 0.0322 |
0.3710 | 5780 | 0.0332 |
0.3716 | 5790 | 0.0281 |
0.3723 | 5800 | 0.0434 |
0.3729 | 5810 | 0.0361 |
0.3736 | 5820 | 0.0387 |
0.3742 | 5830 | 0.0418 |
0.3748 | 5840 | 0.0366 |
0.3755 | 5850 | 0.0304 |
0.3761 | 5860 | 0.0254 |
0.3768 | 5870 | 0.05 |
0.3774 | 5880 | 0.0259 |
0.3780 | 5890 | 0.0313 |
0.3787 | 5900 | 0.0359 |
0.3793 | 5910 | 0.0443 |
0.3800 | 5920 | 0.0302 |
0.3806 | 5930 | 0.0215 |
0.3813 | 5940 | 0.0239 |
0.3819 | 5950 | 0.0291 |
0.3825 | 5960 | 0.0381 |
0.3832 | 5970 | 0.0316 |
0.3838 | 5980 | 0.0226 |
0.3845 | 5990 | 0.0219 |
0.3851 | 6000 | 0.023 |
0.3857 | 6010 | 0.0265 |
0.3864 | 6020 | 0.0252 |
0.3870 | 6030 | 0.0386 |
0.3877 | 6040 | 0.0279 |
0.3883 | 6050 | 0.0373 |
0.3890 | 6060 | 0.042 |
0.3896 | 6070 | 0.0364 |
0.3902 | 6080 | 0.0218 |
0.3909 | 6090 | 0.0462 |
0.3915 | 6100 | 0.0476 |
0.3922 | 6110 | 0.0275 |
0.3928 | 6120 | 0.0312 |
0.3934 | 6130 | 0.0168 |
0.3941 | 6140 | 0.0296 |
0.3947 | 6150 | 0.0378 |
0.3954 | 6160 | 0.0393 |
0.3960 | 6170 | 0.0265 |
0.3967 | 6180 | 0.0177 |
0.3973 | 6190 | 0.0231 |
0.3979 | 6200 | 0.0311 |
0.3986 | 6210 | 0.0298 |
0.3992 | 6220 | 0.0372 |
0.3999 | 6230 | 0.0219 |
0.4005 | 6240 | 0.0161 |
0.4012 | 6250 | 0.0337 |
0.4018 | 6260 | 0.0248 |
0.4024 | 6270 | 0.0435 |
0.4031 | 6280 | 0.0325 |
0.4037 | 6290 | 0.0413 |
0.4044 | 6300 | 0.0467 |
0.4050 | 6310 | 0.0333 |
0.4056 | 6320 | 0.0283 |
0.4063 | 6330 | 0.0201 |
0.4069 | 6340 | 0.0276 |
0.4076 | 6350 | 0.0363 |
0.4082 | 6360 | 0.0355 |
0.4089 | 6370 | 0.028 |
0.4095 | 6380 | 0.0343 |
0.4101 | 6390 | 0.0275 |
0.4108 | 6400 | 0.0282 |
0.4114 | 6410 | 0.019 |
0.4121 | 6420 | 0.0251 |
0.4127 | 6430 | 0.0496 |
0.4133 | 6440 | 0.0496 |
0.4140 | 6450 | 0.0334 |
0.4146 | 6460 | 0.0259 |
0.4153 | 6470 | 0.024 |
0.4159 | 6480 | 0.0478 |
0.4166 | 6490 | 0.0242 |
0.4172 | 6500 | 0.0168 |
0.4178 | 6510 | 0.0286 |
0.4185 | 6520 | 0.0331 |
0.4191 | 6530 | 0.0313 |
0.4198 | 6540 | 0.0424 |
0.4204 | 6550 | 0.0311 |
0.4210 | 6560 | 0.0262 |
0.4217 | 6570 | 0.0364 |
0.4223 | 6580 | 0.0209 |
0.4230 | 6590 | 0.0331 |
0.4236 | 6600 | 0.0347 |
0.4243 | 6610 | 0.03 |
0.4249 | 6620 | 0.0229 |
0.4255 | 6630 | 0.0254 |
0.4262 | 6640 | 0.0311 |
0.4268 | 6650 | 0.0276 |
0.4275 | 6660 | 0.0229 |
0.4281 | 6670 | 0.0476 |
0.4288 | 6680 | 0.0393 |
0.4294 | 6690 | 0.0422 |
0.4300 | 6700 | 0.0339 |
0.4307 | 6710 | 0.0253 |
0.4313 | 6720 | 0.0226 |
0.4320 | 6730 | 0.041 |
0.4326 | 6740 | 0.0236 |
0.4332 | 6750 | 0.0488 |
0.4339 | 6760 | 0.0202 |
0.4345 | 6770 | 0.0174 |
0.4352 | 6780 | 0.0476 |
0.4358 | 6790 | 0.0358 |
0.4365 | 6800 | 0.0298 |
0.4371 | 6810 | 0.0344 |
0.4377 | 6820 | 0.026 |
0.4384 | 6830 | 0.0378 |
0.4390 | 6840 | 0.0327 |
0.4397 | 6850 | 0.0367 |
0.4403 | 6860 | 0.0215 |
0.4409 | 6870 | 0.0323 |
0.4416 | 6880 | 0.0177 |
0.4422 | 6890 | 0.0347 |
0.4429 | 6900 | 0.0291 |
0.4435 | 6910 | 0.0154 |
0.4442 | 6920 | 0.0306 |
0.4448 | 6930 | 0.0216 |
0.4454 | 6940 | 0.0418 |
0.4461 | 6950 | 0.0277 |
0.4467 | 6960 | 0.0232 |
0.4474 | 6970 | 0.0308 |
0.4480 | 6980 | 0.0287 |
0.4486 | 6990 | 0.0289 |
0.4493 | 7000 | 0.0442 |
0.4499 | 7010 | 0.0123 |
0.4506 | 7020 | 0.0354 |
0.4512 | 7030 | 0.0204 |
0.4519 | 7040 | 0.0323 |
0.4525 | 7050 | 0.027 |
0.4531 | 7060 | 0.0271 |
0.4538 | 7070 | 0.0207 |
0.4544 | 7080 | 0.0339 |
0.4551 | 7090 | 0.0243 |
0.4557 | 7100 | 0.024 |
0.4564 | 7110 | 0.0479 |
0.4570 | 7120 | 0.0181 |
0.4576 | 7130 | 0.0156 |
0.4583 | 7140 | 0.0222 |
0.4589 | 7150 | 0.0295 |
0.4596 | 7160 | 0.0254 |
0.4602 | 7170 | 0.0218 |
0.4608 | 7180 | 0.0327 |
0.4615 | 7190 | 0.0326 |
0.4621 | 7200 | 0.0213 |
0.4628 | 7210 | 0.0281 |
0.4634 | 7220 | 0.0349 |
0.4641 | 7230 | 0.0395 |
0.4647 | 7240 | 0.0234 |
0.4653 | 7250 | 0.0229 |
0.4660 | 7260 | 0.0317 |
0.4666 | 7270 | 0.0339 |
0.4673 | 7280 | 0.0233 |
0.4679 | 7290 | 0.028 |
0.4685 | 7300 | 0.0244 |
0.4692 | 7310 | 0.0205 |
0.4698 | 7320 | 0.0237 |
0.4705 | 7330 | 0.0254 |
0.4711 | 7340 | 0.0466 |
0.4718 | 7350 | 0.036 |
0.4724 | 7360 | 0.012 |
0.4730 | 7370 | 0.0325 |
0.4737 | 7380 | 0.0236 |
0.4743 | 7390 | 0.0393 |
0.4750 | 7400 | 0.0323 |
0.4756 | 7410 | 0.0381 |
0.4762 | 7420 | 0.0545 |
0.4769 | 7430 | 0.025 |
0.4775 | 7440 | 0.0275 |
0.4782 | 7450 | 0.02 |
0.4788 | 7460 | 0.0222 |
0.4795 | 7470 | 0.0293 |
0.4801 | 7480 | 0.013 |
0.4807 | 7490 | 0.0137 |
0.4814 | 7500 | 0.0241 |
0.4820 | 7510 | 0.0181 |
0.4827 | 7520 | 0.0119 |
0.4833 | 7530 | 0.0209 |
0.4839 | 7540 | 0.0312 |
0.4846 | 7550 | 0.0335 |
0.4852 | 7560 | 0.0294 |
0.4859 | 7570 | 0.0131 |
0.4865 | 7580 | 0.0195 |
0.4872 | 7590 | 0.0446 |
0.4878 | 7600 | 0.0255 |
0.4884 | 7610 | 0.0222 |
0.4891 | 7620 | 0.0291 |
0.4897 | 7630 | 0.0131 |
0.4904 | 7640 | 0.042 |
0.4910 | 7650 | 0.0227 |
0.4917 | 7660 | 0.0212 |
0.4923 | 7670 | 0.0365 |
0.4929 | 7680 | 0.0417 |
0.4936 | 7690 | 0.0349 |
0.4942 | 7700 | 0.0355 |
0.4949 | 7710 | 0.0237 |
0.4955 | 7720 | 0.0242 |
0.4961 | 7730 | 0.0207 |
0.4968 | 7740 | 0.0255 |
0.4974 | 7750 | 0.0242 |
0.4981 | 7760 | 0.0303 |
0.4987 | 7770 | 0.0191 |
0.4994 | 7780 | 0.0235 |
0.5000 | 7790 | 0.0132 |
0.5006 | 7800 | 0.0331 |
0.5013 | 7810 | 0.0198 |
0.5019 | 7820 | 0.0217 |
0.5026 | 7830 | 0.0366 |
0.5032 | 7840 | 0.0103 |
0.5038 | 7850 | 0.0321 |
0.5045 | 7860 | 0.0183 |
0.5051 | 7870 | 0.0242 |
0.5058 | 7880 | 0.0182 |
0.5064 | 7890 | 0.0207 |
0.5071 | 7900 | 0.0385 |
0.5077 | 7910 | 0.0293 |
0.5083 | 7920 | 0.0201 |
0.5090 | 7930 | 0.0137 |
0.5096 | 7940 | 0.0244 |
0.5103 | 7950 | 0.011 |
0.5109 | 7960 | 0.0314 |
0.5115 | 7970 | 0.0238 |
0.5122 | 7980 | 0.0191 |
0.5128 | 7990 | 0.0342 |
0.5135 | 8000 | 0.0215 |
0.5141 | 8010 | 0.0402 |
0.5148 | 8020 | 0.0194 |
0.5154 | 8030 | 0.0329 |
0.5160 | 8040 | 0.0195 |
0.5167 | 8050 | 0.0229 |
0.5173 | 8060 | 0.0214 |
0.5180 | 8070 | 0.0299 |
0.5186 | 8080 | 0.0222 |
0.5193 | 8090 | 0.0278 |
0.5199 | 8100 | 0.0226 |
0.5205 | 8110 | 0.0208 |
0.5212 | 8120 | 0.0375 |
0.5218 | 8130 | 0.0321 |
0.5225 | 8140 | 0.0141 |
0.5231 | 8150 | 0.0378 |
0.5237 | 8160 | 0.0197 |
0.5244 | 8170 | 0.0201 |
0.5250 | 8180 | 0.0222 |
0.5257 | 8190 | 0.016 |
0.5263 | 8200 | 0.0231 |
0.5270 | 8210 | 0.0305 |
0.5276 | 8220 | 0.018 |
0.5282 | 8230 | 0.0345 |
0.5289 | 8240 | 0.0293 |
0.5295 | 8250 | 0.0284 |
0.5302 | 8260 | 0.0246 |
0.5308 | 8270 | 0.0296 |
0.5314 | 8280 | 0.0327 |
0.5321 | 8290 | 0.0393 |
0.5327 | 8300 | 0.0219 |
0.5334 | 8310 | 0.0194 |
0.5340 | 8320 | 0.0308 |
0.5347 | 8330 | 0.0281 |
0.5353 | 8340 | 0.0304 |
0.5359 | 8350 | 0.0461 |
0.5366 | 8360 | 0.0254 |
0.5372 | 8370 | 0.0286 |
0.5379 | 8380 | 0.0202 |
0.5385 | 8390 | 0.025 |
0.5391 | 8400 | 0.0319 |
0.5398 | 8410 | 0.0299 |
0.5404 | 8420 | 0.0251 |
0.5411 | 8430 | 0.0293 |
0.5417 | 8440 | 0.0382 |
0.5424 | 8450 | 0.0254 |
0.5430 | 8460 | 0.0311 |
0.5436 | 8470 | 0.0283 |
0.5443 | 8480 | 0.0286 |
0.5449 | 8490 | 0.0249 |
0.5456 | 8500 | 0.0328 |
0.5462 | 8510 | 0.0239 |
0.5469 | 8520 | 0.0272 |
0.5475 | 8530 | 0.0262 |
0.5481 | 8540 | 0.0246 |
0.5488 | 8550 | 0.0254 |
0.5494 | 8560 | 0.0255 |
0.5501 | 8570 | 0.0307 |
0.5507 | 8580 | 0.0152 |
0.5513 | 8590 | 0.0291 |
0.5520 | 8600 | 0.017 |
0.5526 | 8610 | 0.0166 |
0.5533 | 8620 | 0.0302 |
0.5539 | 8630 | 0.012 |
0.5546 | 8640 | 0.0239 |
0.5552 | 8650 | 0.0384 |
0.5558 | 8660 | 0.0196 |
0.5565 | 8670 | 0.0287 |
0.5571 | 8680 | 0.0126 |
0.5578 | 8690 | 0.0292 |
0.5584 | 8700 | 0.0184 |
0.5590 | 8710 | 0.0232 |
0.5597 | 8720 | 0.0441 |
0.5603 | 8730 | 0.0272 |
0.5610 | 8740 | 0.017 |
0.5616 | 8750 | 0.0257 |
0.5623 | 8760 | 0.0256 |
0.5629 | 8770 | 0.0141 |
0.5635 | 8780 | 0.0212 |
0.5642 | 8790 | 0.0337 |
0.5648 | 8800 | 0.0252 |
0.5655 | 8810 | 0.0336 |
0.5661 | 8820 | 0.0163 |
0.5667 | 8830 | 0.0277 |
0.5674 | 8840 | 0.02 |
0.5680 | 8850 | 0.0225 |
0.5687 | 8860 | 0.0417 |
0.5693 | 8870 | 0.0248 |
0.5700 | 8880 | 0.0231 |
0.5706 | 8890 | 0.0282 |
0.5712 | 8900 | 0.0221 |
0.5719 | 8910 | 0.0127 |
0.5725 | 8920 | 0.0209 |
0.5732 | 8930 | 0.018 |
0.5738 | 8940 | 0.0368 |
0.5744 | 8950 | 0.0199 |
0.5751 | 8960 | 0.0296 |
0.5757 | 8970 | 0.038 |
0.5764 | 8980 | 0.0373 |
0.5770 | 8990 | 0.0328 |
0.5777 | 9000 | 0.0313 |
0.5783 | 9010 | 0.0206 |
0.5789 | 9020 | 0.0324 |
0.5796 | 9030 | 0.0242 |
0.5802 | 9040 | 0.0328 |
0.5809 | 9050 | 0.0239 |
0.5815 | 9060 | 0.0225 |
0.5822 | 9070 | 0.0334 |
0.5828 | 9080 | 0.0325 |
0.5834 | 9090 | 0.0248 |
0.5841 | 9100 | 0.034 |
0.5847 | 9110 | 0.032 |
0.5854 | 9120 | 0.0441 |
0.5860 | 9130 | 0.0247 |
0.5866 | 9140 | 0.0189 |
0.5873 | 9150 | 0.0216 |
0.5879 | 9160 | 0.0252 |
0.5886 | 9170 | 0.0174 |
0.5892 | 9180 | 0.0227 |
0.5899 | 9190 | 0.0376 |
0.5905 | 9200 | 0.0261 |
0.5911 | 9210 | 0.0382 |
0.5918 | 9220 | 0.0264 |
0.5924 | 9230 | 0.0331 |
0.5931 | 9240 | 0.0178 |
0.5937 | 9250 | 0.0219 |
0.5943 | 9260 | 0.0161 |
0.5950 | 9270 | 0.0139 |
0.5956 | 9280 | 0.0258 |
0.5963 | 9290 | 0.0251 |
0.5969 | 9300 | 0.0291 |
0.5976 | 9310 | 0.0257 |
0.5982 | 9320 | 0.0309 |
0.5988 | 9330 | 0.0256 |
0.5995 | 9340 | 0.021 |
0.6001 | 9350 | 0.0118 |
0.6008 | 9360 | 0.0259 |
0.6014 | 9370 | 0.0088 |
0.6020 | 9380 | 0.0176 |
0.6027 | 9390 | 0.0282 |
0.6033 | 9400 | 0.0161 |
0.6040 | 9410 | 0.0223 |
0.6046 | 9420 | 0.0189 |
0.6053 | 9430 | 0.0251 |
0.6059 | 9440 | 0.0187 |
0.6065 | 9450 | 0.0297 |
0.6072 | 9460 | 0.0181 |
0.6078 | 9470 | 0.023 |
0.6085 | 9480 | 0.0137 |
0.6091 | 9490 | 0.021 |
0.6098 | 9500 | 0.0186 |
0.6104 | 9510 | 0.0236 |
0.6110 | 9520 | 0.013 |
0.6117 | 9530 | 0.0262 |
0.6123 | 9540 | 0.0238 |
0.6130 | 9550 | 0.0198 |
0.6136 | 9560 | 0.0324 |
0.6142 | 9570 | 0.0149 |
0.6149 | 9580 | 0.0205 |
0.6155 | 9590 | 0.0392 |
0.6162 | 9600 | 0.018 |
0.6168 | 9610 | 0.0239 |
0.6175 | 9620 | 0.027 |
0.6181 | 9630 | 0.0276 |
0.6187 | 9640 | 0.0194 |
0.6194 | 9650 | 0.0177 |
0.6200 | 9660 | 0.0263 |
0.6207 | 9670 | 0.0236 |
0.6213 | 9680 | 0.0228 |
0.6219 | 9690 | 0.0235 |
0.6226 | 9700 | 0.0243 |
0.6232 | 9710 | 0.0281 |
0.6239 | 9720 | 0.0242 |
0.6245 | 9730 | 0.0226 |
0.6252 | 9740 | 0.034 |
0.6258 | 9750 | 0.0157 |
0.6264 | 9760 | 0.0122 |
0.6271 | 9770 | 0.0222 |
0.6277 | 9780 | 0.016 |
0.6284 | 9790 | 0.0247 |
0.6290 | 9800 | 0.0364 |
0.6296 | 9810 | 0.0265 |
0.6303 | 9820 | 0.0146 |
0.6309 | 9830 | 0.0161 |
0.6316 | 9840 | 0.0278 |
0.6322 | 9850 | 0.0246 |
0.6329 | 9860 | 0.0126 |
0.6335 | 9870 | 0.0215 |
0.6341 | 9880 | 0.0223 |
0.6348 | 9890 | 0.0167 |
0.6354 | 9900 | 0.0129 |
0.6361 | 9910 | 0.0121 |
0.6367 | 9920 | 0.021 |
0.6374 | 9930 | 0.0423 |
0.6380 | 9940 | 0.0214 |
0.6386 | 9950 | 0.0307 |
0.6393 | 9960 | 0.0222 |
0.6399 | 9970 | 0.0319 |
0.6406 | 9980 | 0.0297 |
0.6412 | 9990 | 0.0307 |
0.6418 | 10000 | 0.0392 |
0.6425 | 10010 | 0.034 |
0.6431 | 10020 | 0.012 |
0.6438 | 10030 | 0.0293 |
0.6444 | 10040 | 0.0228 |
0.6451 | 10050 | 0.024 |
0.6457 | 10060 | 0.0185 |
0.6463 | 10070 | 0.0189 |
0.6470 | 10080 | 0.0212 |
0.6476 | 10090 | 0.0312 |
0.6483 | 10100 | 0.0191 |
0.6489 | 10110 | 0.0311 |
0.6495 | 10120 | 0.0258 |
0.6502 | 10130 | 0.0253 |
0.6508 | 10140 | 0.0288 |
0.6515 | 10150 | 0.0206 |
0.6521 | 10160 | 0.0189 |
0.6528 | 10170 | 0.0219 |
0.6534 | 10180 | 0.0272 |
0.6540 | 10190 | 0.0167 |
0.6547 | 10200 | 0.0113 |
0.6553 | 10210 | 0.0173 |
0.6560 | 10220 | 0.0224 |
0.6566 | 10230 | 0.0228 |
0.6572 | 10240 | 0.0363 |
0.6579 | 10250 | 0.0302 |
0.6585 | 10260 | 0.0183 |
0.6592 | 10270 | 0.0204 |
0.6598 | 10280 | 0.025 |
0.6605 | 10290 | 0.0288 |
0.6611 | 10300 | 0.0309 |
0.6617 | 10310 | 0.0363 |
0.6624 | 10320 | 0.0145 |
0.6630 | 10330 | 0.0381 |
0.6637 | 10340 | 0.0201 |
0.6643 | 10350 | 0.0115 |
0.6649 | 10360 | 0.02 |
0.6656 | 10370 | 0.0197 |
0.6662 | 10380 | 0.0173 |
0.6669 | 10390 | 0.0172 |
0.6675 | 10400 | 0.0233 |
0.6682 | 10410 | 0.029 |
0.6688 | 10420 | 0.0157 |
0.6694 | 10430 | 0.0296 |
0.6701 | 10440 | 0.0358 |
0.6707 | 10450 | 0.0316 |
0.6714 | 10460 | 0.034 |
0.6720 | 10470 | 0.0133 |
0.6727 | 10480 | 0.0339 |
0.6733 | 10490 | 0.0204 |
0.6739 | 10500 | 0.0231 |
0.6746 | 10510 | 0.0151 |
0.6752 | 10520 | 0.0274 |
0.6759 | 10530 | 0.0209 |
0.6765 | 10540 | 0.0187 |
0.6771 | 10550 | 0.0298 |
0.6778 | 10560 | 0.0214 |
0.6784 | 10570 | 0.015 |
0.6791 | 10580 | 0.0259 |
0.6797 | 10590 | 0.018 |
0.6804 | 10600 | 0.0192 |
0.6810 | 10610 | 0.0196 |
0.6816 | 10620 | 0.0163 |
0.6823 | 10630 | 0.0277 |
0.6829 | 10640 | 0.0167 |
0.6836 | 10650 | 0.02 |
0.6842 | 10660 | 0.0408 |
0.6848 | 10670 | 0.0202 |
0.6855 | 10680 | 0.0449 |
0.6861 | 10690 | 0.0246 |
0.6868 | 10700 | 0.0248 |
0.6874 | 10710 | 0.024 |
0.6881 | 10720 | 0.0314 |
0.6887 | 10730 | 0.0102 |
0.6893 | 10740 | 0.0272 |
0.6900 | 10750 | 0.0196 |
0.6906 | 10760 | 0.0133 |
0.6913 | 10770 | 0.0205 |
0.6919 | 10780 | 0.0237 |
0.6925 | 10790 | 0.0203 |
0.6932 | 10800 | 0.0267 |
0.6938 | 10810 | 0.0261 |
0.6945 | 10820 | 0.0248 |
0.6951 | 10830 | 0.0228 |
0.6958 | 10840 | 0.0415 |
0.6964 | 10850 | 0.0277 |
0.6970 | 10860 | 0.0342 |
0.6977 | 10870 | 0.0289 |
0.6983 | 10880 | 0.016 |
0.6990 | 10890 | 0.0103 |
0.6996 | 10900 | 0.0233 |
0.7003 | 10910 | 0.0158 |
0.7009 | 10920 | 0.0183 |
0.7015 | 10930 | 0.0156 |
0.7022 | 10940 | 0.0488 |
0.7028 | 10950 | 0.0235 |
0.7035 | 10960 | 0.0201 |
0.7041 | 10970 | 0.0192 |
0.7047 | 10980 | 0.0283 |
0.7054 | 10990 | 0.0131 |
0.7060 | 11000 | 0.0216 |
0.7067 | 11010 | 0.0184 |
0.7073 | 11020 | 0.0354 |
0.7080 | 11030 | 0.028 |
0.7086 | 11040 | 0.0242 |
0.7092 | 11050 | 0.0131 |
0.7099 | 11060 | 0.0233 |
0.7105 | 11070 | 0.0295 |
0.7112 | 11080 | 0.0177 |
0.7118 | 11090 | 0.0203 |
0.7124 | 11100 | 0.0283 |
0.7131 | 11110 | 0.0115 |
0.7137 | 11120 | 0.0252 |
0.7144 | 11130 | 0.0299 |
0.7150 | 11140 | 0.0199 |
0.7157 | 11150 | 0.0361 |
0.7163 | 11160 | 0.0269 |
0.7169 | 11170 | 0.02 |
0.7176 | 11180 | 0.0167 |
0.7182 | 11190 | 0.0169 |
0.7189 | 11200 | 0.0242 |
0.7195 | 11210 | 0.0276 |
0.7201 | 11220 | 0.0176 |
0.7208 | 11230 | 0.019 |
0.7214 | 11240 | 0.0382 |
0.7221 | 11250 | 0.0354 |
0.7227 | 11260 | 0.0155 |
0.7234 | 11270 | 0.0196 |
0.7240 | 11280 | 0.0328 |
0.7246 | 11290 | 0.0161 |
0.7253 | 11300 | 0.013 |
0.7259 | 11310 | 0.0145 |
0.7266 | 11320 | 0.0217 |
0.7272 | 11330 | 0.0171 |
0.7279 | 11340 | 0.0284 |
0.7285 | 11350 | 0.0264 |
0.7291 | 11360 | 0.03 |
0.7298 | 11370 | 0.0202 |
0.7304 | 11380 | 0.0302 |
0.7311 | 11390 | 0.03 |
0.7317 | 11400 | 0.0276 |
0.7323 | 11410 | 0.0221 |
0.7330 | 11420 | 0.0375 |
0.7336 | 11430 | 0.0341 |
0.7343 | 11440 | 0.0263 |
0.7349 | 11450 | 0.0145 |
0.7356 | 11460 | 0.0212 |
0.7362 | 11470 | 0.0267 |
0.7368 | 11480 | 0.0144 |
0.7375 | 11490 | 0.0311 |
0.7381 | 11500 | 0.0332 |
0.7388 | 11510 | 0.0282 |
0.7394 | 11520 | 0.0279 |
0.7400 | 11530 | 0.0281 |
0.7407 | 11540 | 0.0244 |
0.7413 | 11550 | 0.0152 |
0.7420 | 11560 | 0.0193 |
0.7426 | 11570 | 0.0494 |
0.7433 | 11580 | 0.0246 |
0.7439 | 11590 | 0.03 |
0.7445 | 11600 | 0.0223 |
0.7452 | 11610 | 0.0221 |
0.7458 | 11620 | 0.0248 |
0.7465 | 11630 | 0.0292 |
0.7471 | 11640 | 0.0125 |
0.7477 | 11650 | 0.0125 |
0.7484 | 11660 | 0.0144 |
0.7490 | 11670 | 0.0149 |
0.7497 | 11680 | 0.0232 |
0.7503 | 11690 | 0.0114 |
0.7510 | 11700 | 0.0109 |
0.7516 | 11710 | 0.0152 |
0.7522 | 11720 | 0.0158 |
0.7529 | 11730 | 0.0146 |
0.7535 | 11740 | 0.0285 |
0.7542 | 11750 | 0.021 |
0.7548 | 11760 | 0.0268 |
0.7554 | 11770 | 0.0312 |
0.7561 | 11780 | 0.0298 |
0.7567 | 11790 | 0.0183 |
0.7574 | 11800 | 0.0139 |
0.7580 | 11810 | 0.0223 |
0.7587 | 11820 | 0.0193 |
0.7593 | 11830 | 0.0285 |
0.7599 | 11840 | 0.0282 |
0.7606 | 11850 | 0.0191 |
0.7612 | 11860 | 0.016 |
0.7619 | 11870 | 0.0136 |
0.7625 | 11880 | 0.0191 |
0.7632 | 11890 | 0.0156 |
0.7638 | 11900 | 0.0299 |
0.7644 | 11910 | 0.0202 |
0.7651 | 11920 | 0.0342 |
0.7657 | 11930 | 0.014 |
0.7664 | 11940 | 0.0244 |
0.7670 | 11950 | 0.0128 |
0.7676 | 11960 | 0.0229 |
0.7683 | 11970 | 0.0188 |
0.7689 | 11980 | 0.019 |
0.7696 | 11990 | 0.02 |
0.7702 | 12000 | 0.0191 |
0.7709 | 12010 | 0.0169 |
0.7715 | 12020 | 0.014 |
0.7721 | 12030 | 0.0185 |
0.7728 | 12040 | 0.0201 |
0.7734 | 12050 | 0.0124 |
0.7741 | 12060 | 0.0149 |
0.7747 | 12070 | 0.0352 |
0.7753 | 12080 | 0.0087 |
0.7760 | 12090 | 0.0201 |
0.7766 | 12100 | 0.027 |
0.7773 | 12110 | 0.0159 |
0.7779 | 12120 | 0.0435 |
0.7786 | 12130 | 0.0255 |
0.7792 | 12140 | 0.0226 |
0.7798 | 12150 | 0.0164 |
0.7805 | 12160 | 0.0231 |
0.7811 | 12170 | 0.0085 |
0.7818 | 12180 | 0.0269 |
0.7824 | 12190 | 0.0489 |
0.7830 | 12200 | 0.0203 |
0.7837 | 12210 | 0.02 |
0.7843 | 12220 | 0.0317 |
0.7850 | 12230 | 0.0174 |
0.7856 | 12240 | 0.018 |
0.7863 | 12250 | 0.0251 |
0.7869 | 12260 | 0.0143 |
0.7875 | 12270 | 0.0373 |
0.7882 | 12280 | 0.0307 |
0.7888 | 12290 | 0.0108 |
0.7895 | 12300 | 0.02 |
0.7901 | 12310 | 0.0178 |
0.7908 | 12320 | 0.0161 |
0.7914 | 12330 | 0.0215 |
0.7920 | 12340 | 0.018 |
0.7927 | 12350 | 0.0216 |
0.7933 | 12360 | 0.025 |
0.7940 | 12370 | 0.0157 |
0.7946 | 12380 | 0.0132 |
0.7952 | 12390 | 0.0368 |
0.7959 | 12400 | 0.0155 |
0.7965 | 12410 | 0.0155 |
0.7972 | 12420 | 0.0234 |
0.7978 | 12430 | 0.0259 |
0.7985 | 12440 | 0.0431 |
0.7991 | 12450 | 0.0114 |
0.7997 | 12460 | 0.0147 |
0.8004 | 12470 | 0.0103 |
0.8010 | 12480 | 0.0225 |
0.8017 | 12490 | 0.0276 |
0.8023 | 12500 | 0.03 |
0.8029 | 12510 | 0.0242 |
0.8036 | 12520 | 0.0114 |
0.8042 | 12530 | 0.0117 |
0.8049 | 12540 | 0.0222 |
0.8055 | 12550 | 0.0242 |
0.8062 | 12560 | 0.0264 |
0.8068 | 12570 | 0.0115 |
0.8074 | 12580 | 0.0207 |
0.8081 | 12590 | 0.0154 |
0.8087 | 12600 | 0.0121 |
0.8094 | 12610 | 0.0278 |
0.8100 | 12620 | 0.0187 |
0.8106 | 12630 | 0.022 |
0.8113 | 12640 | 0.0105 |
0.8119 | 12650 | 0.0229 |
0.8126 | 12660 | 0.0209 |
0.8132 | 12670 | 0.0096 |
0.8139 | 12680 | 0.0218 |
0.8145 | 12690 | 0.0391 |
0.8151 | 12700 | 0.0245 |
0.8158 | 12710 | 0.0241 |
0.8164 | 12720 | 0.0278 |
0.8171 | 12730 | 0.0108 |
0.8177 | 12740 | 0.0154 |
0.8184 | 12750 | 0.016 |
0.8190 | 12760 | 0.0158 |
0.8196 | 12770 | 0.0141 |
0.8203 | 12780 | 0.0135 |
0.8209 | 12790 | 0.014 |
0.8216 | 12800 | 0.0134 |
0.8222 | 12810 | 0.0202 |
0.8228 | 12820 | 0.0164 |
0.8235 | 12830 | 0.022 |
0.8241 | 12840 | 0.0339 |
0.8248 | 12850 | 0.0314 |
0.8254 | 12860 | 0.0307 |
0.8261 | 12870 | 0.0084 |
0.8267 | 12880 | 0.021 |
0.8273 | 12890 | 0.0144 |
0.8280 | 12900 | 0.0214 |
0.8286 | 12910 | 0.023 |
0.8293 | 12920 | 0.0231 |
0.8299 | 12930 | 0.0246 |
0.8305 | 12940 | 0.0173 |
0.8312 | 12950 | 0.0355 |
0.8318 | 12960 | 0.026 |
0.8325 | 12970 | 0.0283 |
0.8331 | 12980 | 0.0117 |
0.8338 | 12990 | 0.0189 |
0.8344 | 13000 | 0.0299 |
0.8350 | 13010 | 0.0301 |
0.8357 | 13020 | 0.0063 |
0.8363 | 13030 | 0.0212 |
0.8370 | 13040 | 0.0227 |
0.8376 | 13050 | 0.0144 |
0.8382 | 13060 | 0.0243 |
0.8389 | 13070 | 0.0239 |
0.8395 | 13080 | 0.0183 |
0.8402 | 13090 | 0.0296 |
0.8408 | 13100 | 0.0167 |
0.8415 | 13110 | 0.0187 |
0.8421 | 13120 | 0.0273 |
0.8427 | 13130 | 0.0188 |
0.8434 | 13140 | 0.0133 |
0.8440 | 13150 | 0.0246 |
0.8447 | 13160 | 0.0297 |
0.8453 | 13170 | 0.0275 |
0.8459 | 13180 | 0.0219 |
0.8466 | 13190 | 0.0162 |
0.8472 | 13200 | 0.0298 |
0.8479 | 13210 | 0.0329 |
0.8485 | 13220 | 0.0244 |
0.8492 | 13230 | 0.0211 |
0.8498 | 13240 | 0.0187 |
0.8504 | 13250 | 0.0213 |
0.8511 | 13260 | 0.0362 |
0.8517 | 13270 | 0.0195 |
0.8524 | 13280 | 0.0239 |
0.8530 | 13290 | 0.017 |
0.8537 | 13300 | 0.0212 |
0.8543 | 13310 | 0.0354 |
0.8549 | 13320 | 0.0124 |
0.8556 | 13330 | 0.0218 |
0.8562 | 13340 | 0.0219 |
0.8569 | 13350 | 0.0179 |
0.8575 | 13360 | 0.0215 |
0.8581 | 13370 | 0.0194 |
0.8588 | 13380 | 0.0177 |
0.8594 | 13390 | 0.044 |
0.8601 | 13400 | 0.0221 |
0.8607 | 13410 | 0.0208 |
0.8614 | 13420 | 0.0342 |
0.8620 | 13430 | 0.0301 |
0.8626 | 13440 | 0.019 |
0.8633 | 13450 | 0.0124 |
0.8639 | 13460 | 0.0274 |
0.8646 | 13470 | 0.0173 |
0.8652 | 13480 | 0.0091 |
0.8658 | 13490 | 0.0178 |
0.8665 | 13500 | 0.0228 |
0.8671 | 13510 | 0.0237 |
0.8678 | 13520 | 0.012 |
0.8684 | 13530 | 0.0208 |
0.8691 | 13540 | 0.0197 |
0.8697 | 13550 | 0.021 |
0.8703 | 13560 | 0.0154 |
0.8710 | 13570 | 0.0187 |
0.8716 | 13580 | 0.0292 |
0.8723 | 13590 | 0.0275 |
0.8729 | 13600 | 0.0218 |
0.8735 | 13610 | 0.0129 |
0.8742 | 13620 | 0.0167 |
0.8748 | 13630 | 0.0184 |
0.8755 | 13640 | 0.0265 |
0.8761 | 13650 | 0.0188 |
0.8768 | 13660 | 0.0195 |
0.8774 | 13670 | 0.0279 |
0.8780 | 13680 | 0.0227 |
0.8787 | 13690 | 0.0164 |
0.8793 | 13700 | 0.02 |
0.8800 | 13710 | 0.022 |
0.8806 | 13720 | 0.0207 |
0.8813 | 13730 | 0.0206 |
0.8819 | 13740 | 0.0222 |
0.8825 | 13750 | 0.0077 |
0.8832 | 13760 | 0.0218 |
0.8838 | 13770 | 0.0301 |
0.8845 | 13780 | 0.0274 |
0.8851 | 13790 | 0.0207 |
0.8857 | 13800 | 0.0294 |
0.8864 | 13810 | 0.0127 |
0.8870 | 13820 | 0.0241 |
0.8877 | 13830 | 0.0181 |
0.8883 | 13840 | 0.0111 |
0.8890 | 13850 | 0.0328 |
0.8896 | 13860 | 0.0309 |
0.8902 | 13870 | 0.014 |
0.8909 | 13880 | 0.0152 |
0.8915 | 13890 | 0.0183 |
0.8922 | 13900 | 0.0303 |
0.8928 | 13910 | 0.015 |
0.8934 | 13920 | 0.022 |
0.8941 | 13930 | 0.013 |
0.8947 | 13940 | 0.0154 |
0.8954 | 13950 | 0.022 |
0.8960 | 13960 | 0.0147 |
0.8967 | 13970 | 0.01 |
0.8973 | 13980 | 0.0187 |
0.8979 | 13990 | 0.0194 |
0.8986 | 14000 | 0.029 |
0.8992 | 14010 | 0.0499 |
0.8999 | 14020 | 0.015 |
0.9005 | 14030 | 0.032 |
0.9011 | 14040 | 0.0145 |
0.9018 | 14050 | 0.0111 |
0.9024 | 14060 | 0.0216 |
0.9031 | 14070 | 0.0265 |
0.9037 | 14080 | 0.0236 |
0.9044 | 14090 | 0.0318 |
0.9050 | 14100 | 0.0129 |
0.9056 | 14110 | 0.0192 |
0.9063 | 14120 | 0.0173 |
0.9069 | 14130 | 0.0292 |
0.9076 | 14140 | 0.0187 |
0.9082 | 14150 | 0.0153 |
0.9089 | 14160 | 0.0243 |
0.9095 | 14170 | 0.0296 |
0.9101 | 14180 | 0.0264 |
0.9108 | 14190 | 0.0185 |
0.9114 | 14200 | 0.0239 |
0.9121 | 14210 | 0.0216 |
0.9127 | 14220 | 0.0172 |
0.9133 | 14230 | 0.0346 |
0.9140 | 14240 | 0.0207 |
0.9146 | 14250 | 0.012 |
0.9153 | 14260 | 0.0269 |
0.9159 | 14270 | 0.0236 |
0.9166 | 14280 | 0.0379 |
0.9172 | 14290 | 0.0151 |
0.9178 | 14300 | 0.0124 |
0.9185 | 14310 | 0.0208 |
0.9191 | 14320 | 0.0225 |
0.9198 | 14330 | 0.0153 |
0.9204 | 14340 | 0.0267 |
0.9210 | 14350 | 0.0235 |
0.9217 | 14360 | 0.0303 |
0.9223 | 14370 | 0.0132 |
0.9230 | 14380 | 0.0104 |
0.9236 | 14390 | 0.0189 |
0.9243 | 14400 | 0.0215 |
0.9249 | 14410 | 0.0259 |
0.9255 | 14420 | 0.0327 |
0.9262 | 14430 | 0.0182 |
0.9268 | 14440 | 0.0235 |
0.9275 | 14450 | 0.0281 |
0.9281 | 14460 | 0.0155 |
0.9287 | 14470 | 0.0345 |
0.9294 | 14480 | 0.0273 |
0.9300 | 14490 | 0.0264 |
0.9307 | 14500 | 0.0053 |
0.9313 | 14510 | 0.0238 |
0.9320 | 14520 | 0.0292 |
0.9326 | 14530 | 0.0105 |
0.9332 | 14540 | 0.0246 |
0.9339 | 14550 | 0.0123 |
0.9345 | 14560 | 0.0129 |
0.9352 | 14570 | 0.0206 |
0.9358 | 14580 | 0.0345 |
0.9364 | 14590 | 0.0187 |
0.9371 | 14600 | 0.0217 |
0.9377 | 14610 | 0.0247 |
0.9384 | 14620 | 0.0106 |
0.9390 | 14630 | 0.0189 |
0.9397 | 14640 | 0.0228 |
0.9403 | 14650 | 0.0163 |
0.9409 | 14660 | 0.0198 |
0.9416 | 14670 | 0.0145 |
0.9422 | 14680 | 0.0144 |
0.9429 | 14690 | 0.0223 |
0.9435 | 14700 | 0.0249 |
0.9442 | 14710 | 0.014 |
0.9448 | 14720 | 0.0198 |
0.9454 | 14730 | 0.0311 |
0.9461 | 14740 | 0.0197 |
0.9467 | 14750 | 0.0235 |
0.9474 | 14760 | 0.0213 |
0.9480 | 14770 | 0.0244 |
0.9486 | 14780 | 0.0304 |
0.9493 | 14790 | 0.0116 |
0.9499 | 14800 | 0.0251 |
0.9506 | 14810 | 0.0253 |
0.9512 | 14820 | 0.0138 |
0.9519 | 14830 | 0.0162 |
0.9525 | 14840 | 0.024 |
0.9531 | 14850 | 0.0251 |
0.9538 | 14860 | 0.0198 |
0.9544 | 14870 | 0.0143 |
0.9551 | 14880 | 0.0214 |
0.9557 | 14890 | 0.0161 |
0.9563 | 14900 | 0.0157 |
0.9570 | 14910 | 0.0217 |
0.9576 | 14920 | 0.0208 |
0.9583 | 14930 | 0.0209 |
0.9589 | 14940 | 0.0315 |
0.9596 | 14950 | 0.0153 |
0.9602 | 14960 | 0.0254 |
0.9608 | 14970 | 0.0291 |
0.9615 | 14980 | 0.0177 |
0.9621 | 14990 | 0.0102 |
0.9628 | 15000 | 0.0426 |
0.9634 | 15010 | 0.0362 |
0.9640 | 15020 | 0.0327 |
0.9647 | 15030 | 0.0236 |
0.9653 | 15040 | 0.0213 |
0.9660 | 15050 | 0.0208 |
0.9666 | 15060 | 0.0185 |
0.9673 | 15070 | 0.016 |
0.9679 | 15080 | 0.0177 |
0.9685 | 15090 | 0.0127 |
0.9692 | 15100 | 0.0222 |
0.9698 | 15110 | 0.0133 |
0.9705 | 15120 | 0.0222 |
0.9711 | 15130 | 0.0369 |
0.9718 | 15140 | 0.0306 |
0.9724 | 15150 | 0.0112 |
0.9730 | 15160 | 0.0186 |
0.9737 | 15170 | 0.0054 |
0.9743 | 15180 | 0.0282 |
0.9750 | 15190 | 0.0326 |
0.9756 | 15200 | 0.0252 |
0.9762 | 15210 | 0.0333 |
0.9769 | 15220 | 0.0149 |
0.9775 | 15230 | 0.0216 |
0.9782 | 15240 | 0.017 |
0.9788 | 15250 | 0.0288 |
0.9795 | 15260 | 0.0089 |
0.9801 | 15270 | 0.014 |
0.9807 | 15280 | 0.0175 |
0.9814 | 15290 | 0.0124 |
0.9820 | 15300 | 0.0284 |
0.9827 | 15310 | 0.0224 |
0.9833 | 15320 | 0.0232 |
0.9839 | 15330 | 0.0243 |
0.9846 | 15340 | 0.0056 |
0.9852 | 15350 | 0.007 |
0.9859 | 15360 | 0.0214 |
0.9865 | 15370 | 0.0295 |
0.9872 | 15380 | 0.0255 |
0.9878 | 15390 | 0.021 |
0.9884 | 15400 | 0.0242 |
0.9891 | 15410 | 0.027 |
0.9897 | 15420 | 0.0398 |
0.9904 | 15430 | 0.0135 |
0.9910 | 15440 | 0.0178 |
0.9916 | 15450 | 0.0175 |
0.9923 | 15460 | 0.0279 |
0.9929 | 15470 | 0.016 |
0.9936 | 15480 | 0.0353 |
0.9942 | 15490 | 0.0139 |
0.9949 | 15500 | 0.0165 |
0.9955 | 15510 | 0.0321 |
0.9961 | 15520 | 0.0248 |
0.9968 | 15530 | 0.0076 |
0.9974 | 15540 | 0.0229 |
0.9981 | 15550 | 0.0123 |
0.9987 | 15560 | 0.0135 |
0.9994 | 15570 | 0.0214 |
1.0000 | 15580 | 0.0197 |
Environmental Impact
Carbon emissions were measured using CodeCarbon.
- Energy Consumed: 2.867 kWh
- Carbon Emitted: 2.223 kg of CO2
- Hours Used: 9.62 hours
Training Hardware
- On Cloud: No
- GPU Model: 1 x NVIDIA GeForce RTX 3090
- CPU Model: AMD Ryzen 9 5950X 16-Core Processor
- RAM Size: 31.24 GB
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 5.0.0
- Transformers: 4.56.0.dev0
- PyTorch: 2.8.0+cu126
- Accelerate: 1.9.0
- Datasets: 4.0.0
- Tokenizers: 0.21.4
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 17
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support