|
--- |
|
library_name: transformers |
|
pipeline_tag: text-generation |
|
inference: true |
|
widget: |
|
- text: Hello! |
|
example_title: Hello world |
|
group: Python |
|
base_model: |
|
- ByteDance-Seed/Seed-OSS-36B-Instruct |
|
--- |
|
|
|
This tiny model is for debugging. It is randomly initialized with the config adapted from [ByteDance-Seed/Seed-OSS-36B-Instruct](https://huggingface.co/ByteDance-Seed/Seed-OSS-36B-Instruct). |
|
|
|
### Example usage: |
|
|
|
- vLLM |
|
|
|
```bash |
|
python3 -m vllm.entrypoints.openai.api_server \ |
|
--enable-auto-tool-choice \ |
|
--tool-call-parser seed_oss \ |
|
--trust-remote-code \ |
|
--model ./<local_download_folder> \ |
|
--chat-template ./<local_download_folder>/chat_template.jinja \ |
|
--tensor-parallel-size 2 |
|
|
|
``` |
|
|
|
- Transformers |
|
|
|
```python |
|
import os |
|
import re |
|
|
|
import torch |
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
|
|
model_id = "tiny-random/seed-oss" |
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model_id) |
|
model = AutoModelForCausalLM.from_pretrained(model_id, device_map="auto", torch_dtype=torch.bfloat16) |
|
messages = [ |
|
{"role": "user", "content": "How to make pasta?"}, |
|
] |
|
tokenized_chat = tokenizer.apply_chat_template( |
|
messages, |
|
tokenize=True, |
|
add_generation_prompt=True, |
|
return_tensors="pt", |
|
thinking_budget=64 # control the thinking budget |
|
) |
|
|
|
outputs = model.generate(tokenized_chat.to(model.device), max_new_tokens=128) |
|
output_text = tokenizer.decode(outputs[0]) |
|
print(output_text) |
|
``` |
|
|
|
### Codes to create this repo: |
|
|
|
```python |
|
import json |
|
from pathlib import Path |
|
|
|
import accelerate |
|
import torch |
|
from huggingface_hub import file_exists, hf_hub_download |
|
from transformers import ( |
|
AutoConfig, |
|
AutoModelForCausalLM, |
|
AutoProcessor, |
|
GenerationConfig, |
|
set_seed, |
|
) |
|
|
|
source_model_id = "ByteDance-Seed/Seed-OSS-36B-Instruct" |
|
save_folder = "/tmp/tiny-random/seed-oss" |
|
|
|
processor = AutoProcessor.from_pretrained(source_model_id, trust_remote_code=True) |
|
processor.save_pretrained(save_folder) |
|
|
|
with open(hf_hub_download(source_model_id, filename='config.json', repo_type='model'), 'r', encoding='utf-8') as f: |
|
config_json = json.load(f) |
|
config_json['hidden_size'] = 8 |
|
config_json['head_dim'] = 32 # vllm requirement |
|
config_json['intermediate_size'] = 32 |
|
config_json['num_attention_heads'] = 8 |
|
config_json['num_hidden_layers'] = 2 |
|
config_json['num_key_value_heads'] = 4 # better support tensor parallel |
|
config_json['tie_word_embeddings'] = False |
|
with open(f"{save_folder}/config.json", "w", encoding='utf-8') as f: |
|
json.dump(config_json, f, indent=2) |
|
|
|
config = AutoConfig.from_pretrained( |
|
save_folder, |
|
trust_remote_code=True, |
|
) |
|
print(config) |
|
torch.set_default_dtype(torch.bfloat16) |
|
model = AutoModelForCausalLM.from_config(config, trust_remote_code=True) |
|
torch.set_default_dtype(torch.float32) |
|
if file_exists(filename="generation_config.json", repo_id=source_model_id, repo_type='model'): |
|
model.generation_config = GenerationConfig.from_pretrained( |
|
source_model_id, trust_remote_code=True, |
|
) |
|
model.generation_config.do_sample = True |
|
set_seed(42) |
|
model = model.cpu() # cpu is more stable for random initialization across machines |
|
with torch.no_grad(): |
|
for name, p in sorted(model.named_parameters()): |
|
torch.nn.init.normal_(p, 0, 0.1) |
|
print(name, p.shape) |
|
model.save_pretrained(save_folder) |
|
``` |
|
|
|
### Printing the model: |
|
|
|
```text |
|
SeedOssForCausalLM( |
|
(model): SeedOssModel( |
|
(embed_tokens): Embedding(155136, 8, padding_idx=1) |
|
(layers): ModuleList( |
|
(0-1): 2 x SeedOssDecoderLayer( |
|
(self_attn): SeedOssAttention( |
|
(q_proj): Linear(in_features=8, out_features=256, bias=True) |
|
(k_proj): Linear(in_features=8, out_features=128, bias=True) |
|
(v_proj): Linear(in_features=8, out_features=128, bias=True) |
|
(o_proj): Linear(in_features=256, out_features=8, bias=False) |
|
) |
|
(mlp): SeedOssMLP( |
|
(gate_proj): Linear(in_features=8, out_features=32, bias=False) |
|
(up_proj): Linear(in_features=8, out_features=32, bias=False) |
|
(down_proj): Linear(in_features=32, out_features=8, bias=False) |
|
(act_fn): SiLU() |
|
) |
|
(input_layernorm): SeedOssRMSNorm((8,), eps=1e-06) |
|
(post_attention_layernorm): SeedOssRMSNorm((8,), eps=1e-06) |
|
) |
|
) |
|
(norm): SeedOssRMSNorm((8,), eps=1e-06) |
|
(rotary_emb): SeedOssRotaryEmbedding() |
|
) |
|
(lm_head): Linear(in_features=8, out_features=155136, bias=False) |
|
) |
|
``` |