|
--- |
|
library_name: transformers |
|
pipeline_tag: image-text-to-text |
|
inference: true |
|
widget: |
|
- text: Hello! |
|
example_title: Hello world |
|
group: Python |
|
base_model: |
|
- openbmb/MiniCPM-V-4 |
|
--- |
|
|
|
This tiny model is for debugging. It is randomly initialized with the config adapted from [openbmb/MiniCPM-V-4](https://huggingface.co/openbmb/MiniCPM-V-4). |
|
|
|
### Example usage: |
|
|
|
```python |
|
import numpy as np |
|
import torch |
|
from PIL import Image |
|
from transformers import AutoModel, AutoTokenizer |
|
|
|
model_id = "tiny-random/minicpm-v-4" |
|
model = AutoModel.from_pretrained(model_id, trust_remote_code=True, |
|
attn_implementation='sdpa', torch_dtype=torch.bfloat16) |
|
model = model.eval().cuda() |
|
tokenizer = AutoTokenizer.from_pretrained(model_id, trust_remote_code=True) |
|
|
|
image = Image.fromarray(np.random.randint(0, 255, (224, 224, 3), dtype=np.uint8), 'RGB') |
|
question = "What is the landform in the picture?" |
|
msgs = [{'role': 'user', 'content': [image, question]}] |
|
answer = model.chat( |
|
msgs=msgs, |
|
image=image, |
|
tokenizer=tokenizer, |
|
max_new_tokens=32, |
|
) |
|
print(answer) |
|
|
|
# Second round chat, pass history context of multi-turn conversation |
|
msgs.append({"role": "assistant", "content": [answer]}) |
|
msgs.append({"role": "user", "content": [ |
|
"What should I pay attention to when traveling here?"]}) |
|
answer = model.chat( |
|
msgs=msgs, |
|
image=None, |
|
tokenizer=tokenizer, |
|
max_new_tokens=32, |
|
) |
|
print(answer) |
|
``` |
|
|
|
### Codes to create this repo: |
|
|
|
```python |
|
import json |
|
from pathlib import Path |
|
|
|
import accelerate |
|
import torch |
|
from huggingface_hub import hf_hub_download |
|
from transformers import ( |
|
AutoConfig, |
|
AutoModel, |
|
AutoModelForCausalLM, |
|
AutoProcessor, |
|
AutoTokenizer, |
|
GenerationConfig, |
|
set_seed, |
|
) |
|
|
|
source_model_id = "openbmb/MiniCPM-V-4" |
|
save_folder = "/tmp/tiny-random/minicpm-v-4" |
|
|
|
processor = AutoProcessor.from_pretrained(source_model_id, trust_remote_code=True) |
|
processor.save_pretrained(save_folder) |
|
|
|
with open(hf_hub_download(source_model_id, filename='config.json', repo_type='model',), 'r', encoding='utf-8') as f: |
|
config_json = json.load(f) |
|
for k, v in config_json['auto_map'].items(): |
|
config_json['auto_map'][k] = f'{source_model_id}--{v}' |
|
automap = config_json['auto_map'] |
|
|
|
config_json['head_dim'] = 32 |
|
config_json["hidden_size"] = 128 # required by Sampler -- num_heads=embed_dim // 128 |
|
config_json['intermediate_size'] = 128 |
|
config_json['num_attention_heads'] = 2 |
|
config_json['num_key_value_heads'] = 1 |
|
config_json['num_hidden_layers'] = 2 |
|
config_json['tie_word_embeddings'] = True |
|
|
|
factor = config_json['rope_scaling']['long_factor'] |
|
config_json['rope_scaling']['long_factor'] = factor[:16] |
|
config_json['rope_scaling']['short_factor'] = factor[:16] |
|
|
|
config_json['vision_config']['intermediate_size'] = 128 |
|
config_json['vision_config']['hidden_size'] = 64 |
|
config_json['vision_config']['num_attention_heads'] = 2 |
|
config_json['vision_config']['num_hidden_layers'] = 2 |
|
|
|
with open(f"{save_folder}/config.json", "w", encoding='utf-8') as f: |
|
json.dump(config_json, f, indent=2) |
|
|
|
config = AutoConfig.from_pretrained( |
|
save_folder, |
|
trust_remote_code=True, |
|
) |
|
print(config) |
|
torch.set_default_dtype(torch.bfloat16) |
|
model = AutoModel.from_config(config, trust_remote_code=True) |
|
torch.set_default_dtype(torch.float32) |
|
model.generation_config = GenerationConfig.from_pretrained( |
|
source_model_id, trust_remote_code=True, |
|
) |
|
set_seed(42) |
|
num_params = sum(p.numel() for p in model.parameters()) |
|
with torch.no_grad(): |
|
for name, p in sorted(model.named_parameters()): |
|
torch.nn.init.normal_(p, 0, 0.1) |
|
print(name, p.shape, p.dtype, p.device, f'{p.numel() / num_params * 100: .2f}%') |
|
pass |
|
model.save_pretrained(save_folder) |
|
|
|
def modify_automap(path, source_model_id): |
|
import json |
|
with open(path, 'r', encoding='utf-8') as f: |
|
content = json.load(f) |
|
automap = {} |
|
if content.get('auto_map', None) is not None: |
|
for key, value in content.get('auto_map').items(): |
|
if isinstance(value, str): |
|
value = source_model_id + '--' + value.split('--')[-1] |
|
else: |
|
value = [(source_model_id + '--' + v.split('--')[-1]) for v in value] |
|
automap[key] = value |
|
with open(path, 'w', encoding='utf-8') as f: |
|
json.dump({**content, 'auto_map': automap}, f, indent=2) |
|
|
|
modify_automap(f"{save_folder}/config.json", source_model_id) |
|
modify_automap(f'{save_folder}/processor_config.json', source_model_id) |
|
modify_automap(f'{save_folder}/preprocessor_config.json', source_model_id) |
|
modify_automap(f'{save_folder}/tokenizer_config.json', source_model_id) |
|
for f in Path(save_folder).glob('*.py'): |
|
f.unlink() |
|
``` |