| 
							 | 
						---
 | 
					
					
						
						| 
							 | 
						license: mit
 | 
					
					
						
						| 
							 | 
						pipeline_tag: text-generation
 | 
					
					
						
						| 
							 | 
						library_name: transformers
 | 
					
					
						
						| 
							 | 
						language: [
 | 
					
					
						
						| 
							 | 
						    'en', 'am', 'ar', 'as', 'az', 'be', 'bg', 'bn', 'br', 'bs', 'ca', 'cs', 'cy', 'da', 'de', 'el',
 | 
					
					
						
						| 
							 | 
						    'eo', 'es', 'et', 'eu', 'fa', 'ff', 'fi', 'fr', 'fy', 'ga', 'gd', 'gl', 'gn', 'gu', 'ha', 'he',
 | 
					
					
						
						| 
							 | 
						    'hi', 'hr', 'ht', 'hu', 'hy', 'id', 'ig', 'is', 'it', 'ja', 'jv', 'ka', 'kk', 'km', 'kn', 'ko',
 | 
					
					
						
						| 
							 | 
						    'ku', 'ky', 'la', 'lg', 'li', 'ln', 'lo', 'lt', 'lv', 'mg', 'mk', 'ml', 'mn', 'mr', 'ms', 'my',
 | 
					
					
						
						| 
							 | 
						    'ne', 'nl', 'no', 'ns', 'om', 'or', 'pa', 'pl', 'ps', 'pt', 'qu', 'rm', 'ro', 'ru', 'sa', 'si',
 | 
					
					
						
						| 
							 | 
						    'sc', 'sd', 'sk', 'sl', 'so', 'sq', 'sr', 'ss', 'su', 'sv', 'sw', 'ta', 'te', 'th', 'tl', 'tn',
 | 
					
					
						
						| 
							 | 
						    'tr', 'ug', 'uk', 'ur', 'uz', 'vi', 'wo', 'xh', 'yi', 'yo', 'zu',
 | 
					
					
						
						| 
							 | 
						]
 | 
					
					
						
						| 
							 | 
						datasets:
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						- ontocord/fineweb-permissive-multilingual-2m
 | 
					
					
						
						| 
							 | 
						- distily/c4_multilingual_1M
 | 
					
					
						
						| 
							 | 
						- data-silence/sumnews
 | 
					
					
						
						| 
							 | 
						- xu-song/cc100-samples
 | 
					
					
						
						| 
							 | 
						- badrex/llm-emoji-dataset
 | 
					
					
						
						| 
							 | 
						- fblgit/simple-math
 | 
					
					
						
						| 
							 | 
						- Gusarich/math-expressions-1m
 | 
					
					
						
						| 
							 | 
						- neuralwork/arxiver
 | 
					
					
						
						| 
							 | 
						- christopher/rosetta-code
 | 
					
					
						
						| 
							 | 
						- nampdn-ai/tiny-codes
 | 
					
					
						
						| 
							 | 
						- JeanKaddour/minipile
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						- NousResearch/hermes-function-calling-v1
 | 
					
					
						
						| 
							 | 
						- simplescaling/s1K-1.1
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						- mlabonne/open-perfectblend
 | 
					
					
						
						| 
							 | 
						- allenai/tulu-3-sft-mixture
 | 
					
					
						
						| 
							 | 
						- rombodawg/Everything_Instruct_Multilingual
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						- open-r1/OpenR1-Math-220k
 | 
					
					
						
						| 
							 | 
						- open-thoughts/OpenThoughts-114k
 | 
					
					
						
						| 
							 | 
						- cognitivecomputations/dolphin-r1
 | 
					
					
						
						| 
							 | 
						- simplescaling/s1K-1.1
 | 
					
					
						
						| 
							 | 
						tags:
 | 
					
					
						
						| 
							 | 
						- chat
 | 
					
					
						
						| 
							 | 
						- core
 | 
					
					
						
						| 
							 | 
						- base
 | 
					
					
						
						| 
							 | 
						- instruct
 | 
					
					
						
						| 
							 | 
						- reason
 | 
					
					
						
						| 
							 | 
						---
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						# tangled-alpha-0.5-core
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						```bash
 | 
					
					
						
						| 
							 | 
						time python -B prepare_core_datasets.py
 | 
					
					
						
						| 
							 | 
						```
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						```
 | 
					
					
						
						| 
							 | 
						i=0, min_len=0, max_len=1073741824, block_size=4097, chunk_size=16388000, len(dataset)=1287403, len(dataset) * block_size=5274490091
 | 
					
					
						
						| 
							 | 
						Total number of tokens in the optimized dataset '../core-data-0-0-1073741824-4097-4000' is 5274490091
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						```
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						```bash
 | 
					
					
						
						| 
							 | 
						CUDA_VISIBLE_DEVICES=0 CUDA_LAUNCH_BLOCKING=0 PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True litgpt pretrain --config pretrain_core_model.yaml
 | 
					
					
						
						| 
							 | 
						```
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						```
 | 
					
					
						
						| 
							 | 
						Seed set to 23
 | 
					
					
						
						| 
							 | 
						Time to instantiate model: 0.31 seconds.
 | 
					
					
						
						| 
							 | 
						Total parameters: 201,359,872
 | 
					
					
						
						| 
							 | 
						Verifying settings ...
 | 
					
					
						
						| 
							 | 
						Measured TFLOPs: 7072.06
 | 
					
					
						
						| 
							 | 
						Epoch 1 | iter 256 step 1 | loss train: 11.961, val: n/a | iter time: 406.23 ms (step) remaining time: 3 days, 13:55:33
 | 
					
					
						
						| 
							 | 
						Epoch 1 | iter 512 step 2 | loss train: 11.953, val: n/a | iter time: 358.84 ms (step) remaining time: 3 days, 0:49:32
 | 
					
					
						
						| 
							 | 
						Epoch 1 | iter 768 step 3 | loss train: 11.943, val: n/a | iter time: 357.16 ms (step) remaining time: 2 days, 20:38:36
 | 
					
					
						
						| 
							 | 
						Epoch 1 | iter 1024 step 4 | loss train: 11.907, val: n/a | iter time: 355.69 ms (step) remaining time: 2 days, 18:31:54
 | 
					
					
						
						| 
							 | 
						Epoch 1 | iter 1280 step 5 | loss train: 11.854, val: n/a | iter time: 358.32 ms (step) remaining time: 2 days, 17:13:13
 | 
					
					
						
						| 
							 | 
						Epoch 1 | iter 1536 step 6 | loss train: 11.789, val: n/a | iter time: 355.59 ms (step) remaining time: 2 days, 16:18:25
 | 
					
					
						
						| 
							 | 
						Epoch 1 | iter 1792 step 7 | loss train: 11.703, val: n/a | iter time: 354.88 ms (step) remaining time: 2 days, 15:37:56
 | 
					
					
						
						| 
							 | 
						Epoch 1 | iter 2048 step 8 | loss train: 11.586, val: n/a | iter time: 354.07 ms (step) remaining time: 2 days, 15:06:45
 | 
					
					
						
						| 
							 | 
						Epoch 1 | iter 2304 step 9 | loss train: 11.451, val: n/a | iter time: 352.89 ms (step) remaining time: 2 days, 14:41:54
 | 
					
					
						
						| 
							 | 
						Epoch 1 | iter 2560 step 10 | loss train: 11.347, val: n/a | iter time: 355.58 ms (step) remaining time: 2 days, 14:21:38
 | 
					
					
						
						| 
							 | 
						Epoch 1 | iter 2816 step 11 | loss train: 11.271, val: n/a | iter time: 351.01 ms (step) remaining time: 2 days, 14:04:43
 | 
					
					
						
						| 
							 | 
						Epoch 1 | iter 3072 step 12 | loss train: 11.194, val: n/a | iter time: 351.91 ms (step) remaining time: 2 days, 13:50:26
 | 
					
					
						
						| 
							 | 
						Epoch 1 | iter 3328 step 13 | loss train: 11.151, val: n/a | iter time: 353.02 ms (step) remaining time: 2 days, 13:38:04
 | 
					
					
						
						| 
							 | 
						Epoch 1 | iter 3584 step 14 | loss train: 11.097, val: n/a | iter time: 353.75 ms (step) remaining time: 2 days, 13:27:21
 | 
					
					
						
						| 
							 | 
						Epoch 1 | iter 3840 step 15 | loss train: 11.064, val: n/a | iter time: 358.31 ms (step) remaining time: 2 days, 13:17:48
 | 
					
					
						
						| 
							 | 
						Epoch 1 | iter 4096 step 16 | loss train: 11.008, val: n/a | iter time: 351.95 ms (step) remaining time: 2 days, 13:09:17
 | 
					
					
						
						| 
							 | 
						Epoch 1 | iter 4352 step 17 | loss train: 10.997, val: n/a | iter time: 352.26 ms (step) remaining time: 2 days, 13:01:35
 | 
					
					
						
						| 
							 | 
						Epoch 1 | iter 4608 step 18 | loss train: 10.951, val: n/a | iter time: 352.57 ms (step) remaining time: 2 days, 12:54:35
 | 
					
					
						
						| 
							 | 
						Epoch 1 | iter 4864 step 19 | loss train: 10.902, val: n/a | iter time: 354.73 ms (step) remaining time: 2 days, 12:48:13
 | 
					
					
						
						| 
							 | 
						Epoch 1 | iter 5120 step 20 | loss train: 10.877, val: n/a | iter time: 354.47 ms (step) remaining time: 2 days, 12:43:19
 | 
					
					
						
						| 
							 | 
						Epoch 1 | iter 5376 step 21 | loss train: 10.830, val: n/a | iter time: 353.78 ms (step) remaining time: 2 days, 12:37:49
 | 
					
					
						
						| 
							 | 
						Epoch 1 | iter 5632 step 22 | loss train: 10.809, val: n/a | iter time: 355.03 ms (step) remaining time: 2 days, 12:32:44
 | 
					
					
						
						| 
							 | 
						Epoch 1 | iter 5888 step 23 | loss train: 10.727, val: n/a | iter time: 351.49 ms (step) remaining time: 2 days, 12:27:56
 | 
					
					
						
						| 
							 | 
						Epoch 1 | iter 6144 step 24 | loss train: 10.707, val: n/a | iter time: 351.58 ms (step) remaining time: 2 days, 12:23:24
 | 
					
					
						
						| 
							 | 
						Epoch 1 | iter 6400 step 25 | loss train: 10.643, val: n/a | iter time: 350.84 ms (step) remaining time: 2 days, 12:19:10
 | 
					
					
						
						| 
							 | 
						Epoch 1 | iter 6656 step 26 | loss train: 10.649, val: n/a | iter time: 355.14 ms (step) remaining time: 2 days, 12:15:07
 | 
					
					
						
						| 
							 | 
						Epoch 1 | iter 6912 step 27 | loss train: 10.580, val: n/a | iter time: 352.60 ms (step) remaining time: 2 days, 12:11:12
 | 
					
					
						
						| 
							 | 
						Epoch 1 | iter 7168 step 28 | loss train: 10.554, val: n/a | iter time: 351.57 ms (step) remaining time: 2 days, 12:07:27
 | 
					
					
						
						| 
							 | 
						Epoch 1 | iter 7424 step 29 | loss train: 10.526, val: n/a | iter time: 350.36 ms (step) remaining time: 2 days, 12:03:55
 | 
					
					
						
						| 
							 | 
						Epoch 1 | iter 7680 step 30 | loss train: 10.496, val: n/a | iter time: 353.19 ms (step) remaining time: 2 days, 12:00:34
 | 
					
					
						
						| 
							 | 
						Epoch 1 | iter 7936 step 31 | loss train: 10.496, val: n/a | iter time: 350.95 ms (step) remaining time: 2 days, 11:57:21
 | 
					
					
						
						| 
							 | 
						Epoch 1 | iter 8192 step 32 | loss train: 10.421, val: n/a | iter time: 352.71 ms (step) remaining time: 2 days, 11:54:18
 | 
					
					
						
						| 
							 | 
						Epoch 1 | iter 8448 step 33 | loss train: 10.379, val: n/a | iter time: 354.15 ms (step) remaining time: 2 days, 11:51:21
 | 
					
					
						
						| 
							 | 
						Epoch 1 | iter 8704 step 34 | loss train: 10.343, val: n/a | iter time: 353.95 ms (step) remaining time: 2 days, 11:48:29
 | 
					
					
						
						| 
							 | 
						Epoch 1 | iter 8960 step 35 | loss train: 10.353, val: n/a | iter time: 351.04 ms (step) remaining time: 2 days, 11:45:44
 | 
					
					
						
						| 
							 | 
						Epoch 1 | iter 9216 step 36 | loss train: 10.323, val: n/a | iter time: 354.76 ms (step) remaining time: 2 days, 11:43:05
 | 
					
					
						
						| 
							 | 
						Epoch 1 | iter 9472 step 37 | loss train: 10.258, val: n/a | iter time: 353.18 ms (step) remaining time: 2 days, 11:40:29
 | 
					
					
						
						| 
							 | 
						Epoch 1 | iter 9728 step 38 | loss train: 10.260, val: n/a | iter time: 353.86 ms (step) remaining time: 2 days, 11:37:57
 | 
					
					
						
						| 
							 | 
						Epoch 1 | iter 9984 step 39 | loss train: 10.257, val: n/a | iter time: 356.14 ms (step) remaining time: 2 days, 11:35:50
 | 
					
					
						
						| 
							 | 
						Epoch 1 | iter 10240 step 40 | loss train: 10.179, val: n/a | iter time: 353.73 ms (step) remaining time: 2 days, 11:33:23
 | 
					
					
						
						| 
							 | 
						Epoch 1 | iter 10496 step 41 | loss train: 10.163, val: n/a | iter time: 350.49 ms (step) remaining time: 2 days, 11:30:59
 | 
					
					
						
						| 
							 | 
						Epoch 1 | iter 10752 step 42 | loss train: 10.156, val: n/a | iter time: 354.15 ms (step) remaining time: 2 days, 11:28:40
 | 
					
					
						
						| 
							 | 
						Epoch 1 | iter 11008 step 43 | loss train: 10.150, val: n/a | iter time: 350.99 ms (step) remaining time: 2 days, 11:26:24
 | 
					
					
						
						| 
							 | 
						Epoch 1 | iter 11264 step 44 | loss train: 10.089, val: n/a | iter time: 354.28 ms (step) remaining time: 2 days, 11:24:09
 | 
					
					
						
						| 
							 | 
						Epoch 1 | iter 11520 step 45 | loss train: 10.096, val: n/a | iter time: 352.46 ms (step) remaining time: 2 days, 11:21:56
 | 
					
					
						
						| 
							 | 
						Epoch 1 | iter 11776 step 46 | loss train: 10.021, val: n/a | iter time: 356.80 ms (step) remaining time: 2 days, 11:19:45
 | 
					
					
						
						| 
							 | 
						Epoch 1 | iter 12032 step 47 | loss train: 10.002, val: n/a | iter time: 355.30 ms (step) remaining time: 2 days, 11:17:36
 | 
					
					
						
						| 
							 | 
						Epoch 1 | iter 12288 step 48 | loss train: 10.021, val: n/a | iter time: 355.12 ms (step) remaining time: 2 days, 11:15:32
 | 
					
					
						
						| 
							 | 
						Epoch 1 | iter 12544 step 49 | loss train: 10.017, val: n/a | iter time: 353.81 ms (step) remaining time: 2 days, 11:13:29
 | 
					
					
						
						| 
							 | 
						Epoch 1 | iter 12800 step 50 | loss train: 9.966, val: n/a | iter time: 354.70 ms (step) remaining time: 2 days, 11:11:26
 | 
					
					
						
						| 
							 | 
						# ...
 | 
					
					
						
						| 
							 | 
						Epoch 1 | iter 640256 step 2501 | loss train: 3.419, val: 3.366 | iter time: 351.28 ms (step) remaining time: 0:20:06
 | 
					
					
						
						| 
							 | 
						Epoch 1 | iter 640512 step 2502 | loss train: 3.425, val: 3.366 | iter time: 351.02 ms (step) remaining time: 0:18:40
 | 
					
					
						
						| 
							 | 
						Epoch 1 | iter 640768 step 2503 | loss train: 3.396, val: 3.366 | iter time: 351.61 ms (step) remaining time: 0:17:14
 | 
					
					
						
						| 
							 | 
						Epoch 1 | iter 641024 step 2504 | loss train: 3.466, val: 3.366 | iter time: 351.42 ms (step) remaining time: 0:15:48
 | 
					
					
						
						| 
							 | 
						Epoch 1 | iter 641280 step 2505 | loss train: 3.426, val: 3.366 | iter time: 351.72 ms (step) remaining time: 0:14:23
 | 
					
					
						
						| 
							 | 
						Epoch 1 | iter 641536 step 2506 | loss train: 3.410, val: 3.366 | iter time: 351.04 ms (step) remaining time: 0:12:57
 | 
					
					
						
						| 
							 | 
						Epoch 1 | iter 641792 step 2507 | loss train: 3.523, val: 3.366 | iter time: 352.67 ms (step) remaining time: 0:11:31
 | 
					
					
						
						| 
							 | 
						Epoch 1 | iter 642048 step 2508 | loss train: 3.518, val: 3.366 | iter time: 352.04 ms (step) remaining time: 0:10:06
 | 
					
					
						
						| 
							 | 
						Epoch 1 | iter 642304 step 2509 | loss train: 3.533, val: 3.366 | iter time: 350.88 ms (step) remaining time: 0:08:40
 | 
					
					
						
						| 
							 | 
						Epoch 1 | iter 642560 step 2510 | loss train: 3.541, val: 3.366 | iter time: 351.22 ms (step) remaining time: 0:07:14
 | 
					
					
						
						| 
							 | 
						Epoch 1 | iter 642816 step 2511 | loss train: 3.564, val: 3.366 | iter time: 352.00 ms (step) remaining time: 0:05:48
 | 
					
					
						
						| 
							 | 
						Epoch 1 | iter 643072 step 2512 | loss train: 3.462, val: 3.366 | iter time: 351.88 ms (step) remaining time: 0:04:23
 | 
					
					
						
						| 
							 | 
						Epoch 1 | iter 643328 step 2513 | loss train: 3.530, val: 3.366 | iter time: 351.49 ms (step) remaining time: 0:02:57
 | 
					
					
						
						| 
							 | 
						Epoch 1 | iter 643584 step 2514 | loss train: 3.484, val: 3.366 | iter time: 351.11 ms (step) remaining time: 0:01:31
 | 
					
					
						
						| 
							 | 
						Epoch 2 | iter 643840 step 2515 | loss train: 3.375, val: 3.366 | iter time: 352.07 ms (step) remaining time: 0:00:06
 | 
					
					
						
						| 
							 | 
						Validating ...
 | 
					
					
						
						| 
							 | 
						Final evaluation | val loss: 3.366 | val ppl: 28.963
 | 
					
					
						
						| 
							 | 
						Saving checkpoint to '../out/pretrain-core/final/lit_model.pth'
 | 
					
					
						
						| 
							 | 
						----------------------------------------
 | 
					
					
						
						| 
							 | 
						| Performance
 | 
					
					
						
						| 
							 | 
						| - Total tokens  : 5,274,484,736
 | 
					
					
						
						| 
							 | 
						| - Training Time : 215640.67 s
 | 
					
					
						
						| 
							 | 
						| - Tok/sec       : 16453.94 tok/s
 | 
					
					
						
						| 
							 | 
						| ----------------------------------------
 | 
					
					
						
						| 
							 | 
						| Memory Usage
 | 
					
					
						
						| 
							 | 
						| - Memory Used   : 20.44 GB
 | 
					
					
						
						| 
							 | 
						----------------------------------------
 | 
					
					
						
						| 
							 | 
						```
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						Backup `wandb`:
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						```bash
 | 
					
					
						
						| 
							 | 
						mv wandb wandb-pretrain-core
 | 
					
					
						
						| 
							 | 
						```
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						Chat with model:
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						```bash
 | 
					
					
						
						| 
							 | 
						CUDA_VISIBLE_DEVICES=0 CUDA_LAUNCH_BLOCKING=0 PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True litgpt chat ../out/pretrain-core/final
 | 
					
					
						
						| 
							 | 
						```
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						```bash
 | 
					
					
						
						| 
							 | 
						CUDA_VISIBLE_DEVICES=0 CUDA_LAUNCH_BLOCKING=0 PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True time litgpt evaluate --tasks 'leaderboard' --out_dir '../evaluate/pretrain-core-0/leaderboard/' --batch_size 1 --dtype 'bfloat16' '../out/pretrain-core/final'
 | 
					
					
						
						| 
							 | 
						```
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						```
 | 
					
					
						
						| 
							 | 
						Tasks                           |Version|Filter|n-shot|        Metric         |   |Value |   |Stderr|
 | 
					
					
						
						| 
							 | 
						|-----------------------------------------------------------|-------|------|-----:|-----------------------|---|-----:|---|------|
 | 
					
					
						
						| 
							 | 
						|leaderboard                                                |    N/A|      |      |                       |   |      |   |      |
 | 
					
					
						
						| 
							 | 
						| - leaderboard_bbh                                         |    N/A|      |      |                       |   |      |   |      |
 | 
					
					
						
						| 
							 | 
						|  - leaderboard_bbh_boolean_expressions                    |      1|none  |     3|acc_norm               |↑  |0.5640|±  |0.0314|
 | 
					
					
						
						| 
							 | 
						|  - leaderboard_bbh_causal_judgement                       |      1|none  |     3|acc_norm               |↑  |0.5187|±  |0.0366|
 | 
					
					
						
						| 
							 | 
						|  - leaderboard_bbh_date_understanding                     |      1|none  |     3|acc_norm               |↑  |0.2000|±  |0.0253|
 | 
					
					
						
						| 
							 | 
						|  - leaderboard_bbh_disambiguation_qa                      |      1|none  |     3|acc_norm               |↑  |0.2960|±  |0.0289|
 | 
					
					
						
						| 
							 | 
						|  - leaderboard_bbh_formal_fallacies                       |      1|none  |     3|acc_norm               |↑  |0.4680|±  |0.0316|
 | 
					
					
						
						| 
							 | 
						|  - leaderboard_bbh_geometric_shapes                       |      1|none  |     3|acc_norm               |↑  |0.0880|±  |0.0180|
 | 
					
					
						
						| 
							 | 
						|  - leaderboard_bbh_hyperbaton                             |      1|none  |     3|acc_norm               |↑  |0.5160|±  |0.0317|
 | 
					
					
						
						| 
							 | 
						|  - leaderboard_bbh_logical_deduction_five_objects         |      1|none  |     3|acc_norm               |↑  |0.1920|±  |0.0250|
 | 
					
					
						
						| 
							 | 
						|  - leaderboard_bbh_logical_deduction_seven_objects        |      1|none  |     3|acc_norm               |↑  |0.1320|±  |0.0215|
 | 
					
					
						
						| 
							 | 
						|  - leaderboard_bbh_logical_deduction_three_objects        |      1|none  |     3|acc_norm               |↑  |0.3360|±  |0.0299|
 | 
					
					
						
						| 
							 | 
						|  - leaderboard_bbh_movie_recommendation                   |      1|none  |     3|acc_norm               |↑  |0.2520|±  |0.0275|
 | 
					
					
						
						| 
							 | 
						|  - leaderboard_bbh_navigate                               |      1|none  |     3|acc_norm               |↑  |0.5520|±  |0.0315|
 | 
					
					
						
						| 
							 | 
						|  - leaderboard_bbh_object_counting                        |      1|none  |     3|acc_norm               |↑  |0.0760|±  |0.0168|
 | 
					
					
						
						| 
							 | 
						|  - leaderboard_bbh_penguins_in_a_table                    |      1|none  |     3|acc_norm               |↑  |0.1918|±  |0.0327|
 | 
					
					
						
						| 
							 | 
						|  - leaderboard_bbh_reasoning_about_colored_objects        |      1|none  |     3|acc_norm               |↑  |0.0680|±  |0.0160|
 | 
					
					
						
						| 
							 | 
						|  - leaderboard_bbh_ruin_names                             |      1|none  |     3|acc_norm               |↑  |0.2080|±  |0.0257|
 | 
					
					
						
						| 
							 | 
						|  - leaderboard_bbh_salient_translation_error_detection    |      1|none  |     3|acc_norm               |↑  |0.1880|±  |0.0248|
 | 
					
					
						
						| 
							 | 
						|  - leaderboard_bbh_snarks                                 |      1|none  |     3|acc_norm               |↑  |0.4607|±  |0.0375|
 | 
					
					
						
						| 
							 | 
						|  - leaderboard_bbh_sports_understanding                   |      1|none  |     3|acc_norm               |↑  |0.4600|±  |0.0316|
 | 
					
					
						
						| 
							 | 
						|  - leaderboard_bbh_temporal_sequences                     |      1|none  |     3|acc_norm               |↑  |0.2720|±  |0.0282|
 | 
					
					
						
						| 
							 | 
						|  - leaderboard_bbh_tracking_shuffled_objects_five_objects |      1|none  |     3|acc_norm               |↑  |0.2080|±  |0.0257|
 | 
					
					
						
						| 
							 | 
						|  - leaderboard_bbh_tracking_shuffled_objects_seven_objects|      1|none  |     3|acc_norm               |↑  |0.1520|±  |0.0228|
 | 
					
					
						
						| 
							 | 
						|  - leaderboard_bbh_tracking_shuffled_objects_three_objects|      1|none  |     3|acc_norm               |↑  |0.3320|±  |0.0298|
 | 
					
					
						
						| 
							 | 
						|  - leaderboard_bbh_web_of_lies                            |      1|none  |     3|acc_norm               |↑  |0.4880|±  |0.0317|
 | 
					
					
						
						| 
							 | 
						| - leaderboard_gpqa                                        |    N/A|      |      |                       |   |      |   |      |
 | 
					
					
						
						| 
							 | 
						|  - leaderboard_gpqa_diamond                               |      1|none  |     0|acc_norm               |↑  |0.2020|±  |0.0286|
 | 
					
					
						
						| 
							 | 
						|  - leaderboard_gpqa_extended                              |      1|none  |     0|acc_norm               |↑  |0.2656|±  |0.0189|
 | 
					
					
						
						| 
							 | 
						|  - leaderboard_gpqa_main                                  |      1|none  |     0|acc_norm               |↑  |0.2567|±  |0.0207|
 | 
					
					
						
						| 
							 | 
						| - leaderboard_ifeval                                      |      3|none  |     0|inst_level_loose_acc   |↑  |0.2350|±  |   N/A|
 | 
					
					
						
						| 
							 | 
						|                                                           |       |none  |     0|inst_level_strict_acc  |↑  |0.2242|±  |   N/A|
 | 
					
					
						
						| 
							 | 
						|                                                           |       |none  |     0|prompt_level_loose_acc |↑  |0.1109|±  |0.0135|
 | 
					
					
						
						| 
							 | 
						|                                                           |       |none  |     0|prompt_level_strict_acc|↑  |0.1054|±  |0.0132|
 | 
					
					
						
						| 
							 | 
						| - leaderboard_math_hard                                   |    N/A|      |      |                       |   |      |   |      |
 | 
					
					
						
						| 
							 | 
						|  - leaderboard_math_algebra_hard                          |      2|none  |     4|exact_match            |↑  |0.0000|±  |     0|
 | 
					
					
						
						| 
							 | 
						|  - leaderboard_math_counting_and_prob_hard                |      2|none  |     4|exact_match            |↑  |0.0000|±  |     0|
 | 
					
					
						
						| 
							 | 
						|  - leaderboard_math_geometry_hard                         |      2|none  |     4|exact_match            |↑  |0.0000|±  |     0|
 | 
					
					
						
						| 
							 | 
						|  - leaderboard_math_intermediate_algebra_hard             |      2|none  |     4|exact_match            |↑  |0.0000|±  |     0|
 | 
					
					
						
						| 
							 | 
						|  - leaderboard_math_num_theory_hard                       |      2|none  |     4|exact_match            |↑  |0.0019|±  |0.0019|
 | 
					
					
						
						| 
							 | 
						|  - leaderboard_math_prealgebra_hard                       |      2|none  |     4|exact_match            |↑  |0.0011|±  |0.0011|
 | 
					
					
						
						| 
							 | 
						|  - leaderboard_math_precalculus_hard                      |      2|none  |     4|exact_match            |↑  |0.0000|±  |     0|
 | 
					
					
						
						| 
							 | 
						| - leaderboard_mmlu_pro                                    |    0.1|none  |     5|acc                    |↑  |0.1177|±  |0.0029|
 | 
					
					
						
						| 
							 | 
						| - leaderboard_musr                                        |    N/A|      |      |                       |   |      |   |      |
 | 
					
					
						
						| 
							 | 
						|  - leaderboard_musr_murder_mysteries                      |      1|none  |     0|acc_norm               |↑  |0.4880|±  |0.0317|
 | 
					
					
						
						| 
							 | 
						|  - leaderboard_musr_object_placements                     |      1|none  |     0|acc_norm               |↑  |0.2266|±  |0.0262|
 | 
					
					
						
						| 
							 | 
						|  - leaderboard_musr_team_allocation                       |      1|none  |     0|acc_norm               |↑  |0.2560|±  |0.0277|
 | 
					
					
						
						| 
							 | 
						```
 | 
					
					
						
						| 
							 | 
						
 |