Use with the Stable Diffusion Pipeline
import torch
from diffusers import AutoPipelineForText2Image
from transformers import CLIPTokenizer, CLIPTextModel
device = "cuda" if torch.cuda.is_available() else "cpu"
lang = "hin_Deva" # Hindi
# Load pipeline
pipe = AutoPipelineForText2Image.from_pretrained("stabilityai/sdxl-turbo")
# Load the multilingual tokenizer
tokenizer = CLIPTokenizer.from_pretrained("tokenizers/multilingual")
pipe.tokenizer = tokenizer
pipe.text_encoder.resize_token_embeddings(len(tokenizer))
# Load the fine-tuned text encoder
state_dict = torch.load(f"models/{lang}/{lang}_text_encoder.pth")
new_text_encoder = CLIPTextModel(config=pipe.text_encoder.config)
new_text_encoder.load_state_dict(state_dict)
new_text_encoder = new_text_encoder.to(device)
pipe.text_encoder = new_text_encoder
pipe = pipe.to(device)
# Generate and save image
caption = "गाँव का शांतिपूर्ण दृश्य|"
image = pipe(caption).images[0]
image.save(f"example.png")
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support
Model tree for surbhim18/MultilingualSDXL
Base model
stabilityai/sdxl-turbo