student-abdullah's picture
Update README.md
6ea82ab verified
|
raw
history blame
3.57 kB
metadata
base_model: Qwen/Qwen2.5-Coder-0.5B
datasets: None
language:
  - en
license: apache-2.0
tags:
  - text-generation-inference
  - transformers
  - torch
  - trl
  - unsloth
  - llama
  - gguf

Uploaded model

  • Developed by: student-abdullah
  • License: apache-2.0
  • Quantized from model: Qwen2.5-Coder-0.5B
  • Created on: 06th July, 2025

Acknowledgement


Quantization Description

This model is quantized using selective quantization from the Qwen2.5-Coder-0.5B base model to increase its speed while preserving the capabilities in generating relevant and accurate responses related python programming. The quantization method included 32-bit quantization of the following Layers:

  • q_proj
  • v_proj
  • o_proj
  • down_proj
  • lm_head

Rest of the remaining layers were quantized to q3_k_l


Model Description

Layer Name Role (Short) Type
q_proj, k_proj, v_proj Compute query, key, and value for attention mechanism Attention Proj
o_proj Projects attention output back to model hidden size Attention Proj
down_proj Projects MLP output down to hidden size MLP
gate_proj First part of Gated MLP, controls info flow MLP
up_proj Expands hidden size in MLP MLP
lm_head Final linear layer for logits Output Head
embed_tokens Token embedding layer Input Embed
norm Final layernorm Normalization
*_layernorm Normalize inputs to layers Normalization

Model Architect

Qwen2ForCausalLM( (model): Qwen2Model( (embed_tokens): Embedding(151936, 896, padding_idx=151665) (layers): ModuleList( (0-23): 24 x Qwen2DecoderLayer( (self_attn): Qwen2Attention( (q_proj): Linear(in_features=896, out_features=896, bias=True) (k_proj): Linear(in_features=896, out_features=128, bias=True) (v_proj): Linear(in_features=896, out_features=128, bias=True) (o_proj): Linear(in_features=896, out_features=896, bias=False) (rotary_emb): LlamaRotaryEmbedding() ) (mlp): Qwen2MLP( (gate_proj): Linear(in_features=896, out_features=4864, bias=False) (up_proj): Linear(in_features=896, out_features=4864, bias=False) (down_proj): Linear(in_features=4864, out_features=896, bias=False) (act_fn): SiLU() ) (input_layernorm): Qwen2RMSNorm((896,), eps=1e-06) (post_attention_layernorm): Qwen2RMSNorm((896,), eps=1e-06) ) ) (norm): Qwen2RMSNorm((896,), eps=1e-06) (rotary_emb): LlamaRotaryEmbedding() ) (lm_head): Linear(in_features=896, out_features=151936, bias=False) )


Performance & Limitations

  • YET TO BE EXAMINED

Model Performace Evaluation:

  • YET TO BE EVALUATED