File size: 14,452 Bytes
11528c6 a18b96b 11528c6 20026e7 11528c6 9d2f2d0 11528c6 9d2f2d0 11528c6 9d2f2d0 11528c6 9d2f2d0 11528c6 f55b26b 11528c6 9d2f2d0 11528c6 f55b26b 11528c6 9d2f2d0 11528c6 f55b26b 11528c6 f55b26b 11528c6 20026e7 11528c6 0e9d476 11528c6 20026e7 11528c6 0e9d476 11528c6 f55b26b 11528c6 f55b26b 9c608de 11528c6 f55b26b 11528c6 f55b26b 11528c6 f55b26b 11528c6 9d2f2d0 11528c6 a18b96b 11528c6 9d2f2d0 f55b26b 11528c6 f55b26b 11528c6 1059c6a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 |
import math
import torch
import torch.nn as nn
import torch.nn.functional as F
from typing import Optional, Tuple, List, Union
from transformers import PreTrainedModel
from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast
from transformers.generation import GenerationMixin
from transformers.utils import logging
from configuration_quasrav4 import InfinityFormerConfig
logger = logging.get_logger(__name__)
class RotaryPositionEmbedding(nn.Module):
def __init__(self, dim: int, base: int = 10000):
super().__init__()
self.dim = dim
self.base = base
inv_freq = 1.0 / (base ** (torch.arange(0, dim, 2).float() / dim))
self.register_buffer("inv_freq", inv_freq, persistent=False)
def _get_rotary_embeddings(self, x: torch.Tensor, seq_dim: int = -2) -> Tuple[torch.Tensor, torch.Tensor]:
seq_len = x.size(seq_dim)
t = torch.arange(seq_len, device=x.device, dtype=self.inv_freq.dtype)
freqs = torch.einsum('i,j->ij', t, self.inv_freq)
emb = torch.cat((freqs, freqs), dim=-1)
return emb.cos(), emb.sin()
def rotate_half(self, x: torch.Tensor) -> torch.Tensor:
x1, x2 = x.chunk(2, dim=-1)
return torch.cat((-x2, x1), dim=-1)
def apply_rotary_pos_emb(self, x: torch.Tensor, cos: torch.Tensor, sin: torch.Tensor) -> torch.Tensor:
return (x * cos) + (self.rotate_half(x) * sin)
def forward(self, x: torch.Tensor) -> torch.Tensor:
cos, sin = self._get_rotary_embeddings(x, seq_dim=1)
return self.apply_rotary_pos_emb(x, cos.unsqueeze(0).unsqueeze(2), sin.unsqueeze(0).unsqueeze(2))
class KernelFunction(nn.Module):
def __init__(self, config: InfinityFormerConfig):
super().__init__()
self.kernel_type = config.kernel_type
self.epsilon = config.kernel_epsilon
if self.kernel_type == 'learnable':
self.temperature = nn.Parameter(torch.ones(1) * 0.1)
def forward(self, x: torch.Tensor) -> torch.Tensor:
if self.kernel_type == 'elu':
return F.elu(x) + 1.0 + self.epsilon
elif self.kernel_type == 'relu':
return F.relu(x) + self.epsilon
elif self.kernel_type == 'learnable':
return F.elu(x * self.temperature) + 1.0 + self.epsilon
else:
raise ValueError(f"Unknown kernel type: {self.kernel_type}")
class GatedFeedForward(nn.Module):
def __init__(self, config: InfinityFormerConfig):
super().__init__()
self.hidden_size = config.hidden_size
self.intermediate_size = config.intermediate_size
self.fc1 = nn.Linear(self.hidden_size, self.intermediate_size * 2)
self.fc2 = nn.Linear(self.intermediate_size, self.hidden_size)
self.activation_dropout = nn.Dropout(config.hidden_dropout_prob)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
self.layer_norm = nn.LayerNorm(self.hidden_size, eps=config.layer_norm_eps)
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
residual = hidden_states
hidden_states = self.layer_norm(hidden_states)
hidden_states, gate = self.fc1(hidden_states).chunk(2, dim=-1)
hidden_states = F.gelu(hidden_states) * torch.sigmoid(gate)
hidden_states = self.activation_dropout(hidden_states)
hidden_states = self.fc2(hidden_states)
hidden_states = self.dropout(hidden_states)
return hidden_states + residual
class LinearAttention(nn.Module):
def __init__(self, config: InfinityFormerConfig, layer_idx: int = 0):
super().__init__()
self.hidden_size = config.hidden_size
self.num_heads = config.num_attention_heads
self.head_dim = self.hidden_size // self.num_heads
self.layer_idx = layer_idx
self.q_proj = nn.Linear(self.hidden_size, self.hidden_size)
self.k_proj = nn.Linear(self.hidden_size, self.hidden_size)
self.v_proj = nn.Linear(self.hidden_size, self.hidden_size)
self.out_proj = nn.Linear(self.hidden_size, self.hidden_size)
self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
self.kernel = KernelFunction(config)
self.use_memory = False # Memory is disabled in this version
self.use_rotary = config.use_rotary_embeddings
if self.use_rotary:
self.rotary_emb = RotaryPositionEmbedding(self.head_dim, config.rotary_embedding_base)
def forward(self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, **kwargs) -> Tuple[torch.Tensor, Optional[torch.Tensor]]:
batch_size, seq_len, _ = hidden_states.size()
q = self.q_proj(hidden_states)
k = self.k_proj(hidden_states)
v = self.v_proj(hidden_states)
q = q.view(batch_size, seq_len, self.num_heads, self.head_dim)
k = k.view(batch_size, seq_len, self.num_heads, self.head_dim)
v = v.view(batch_size, seq_len, self.num_heads, self.head_dim)
if self.use_rotary:
q = self.rotary_emb(q)
k = self.rotary_emb(k)
q = self.kernel(q)
k = self.kernel(k)
q_for_sdpa = q.transpose(1, 2)
k_for_sdpa = k.transpose(1, 2)
v_for_sdpa = v.transpose(1, 2)
bool_attention_mask = None
if attention_mask is not None:
if attention_mask.dim() == 2:
attention_mask = attention_mask.unsqueeze(1).unsqueeze(1)
bool_attention_mask = attention_mask < 0
context_output = F.scaled_dot_product_attention(
q_for_sdpa, k_for_sdpa, v_for_sdpa, attn_mask=bool_attention_mask, dropout_p=self.dropout.p if self.training else 0.0
)
context_output = context_output.transpose(1, 2)
final_output = context_output.reshape(batch_size, seq_len, self.hidden_size)
final_output = self.out_proj(final_output)
final_output = self.dropout(final_output)
return final_output, None
class InfinityFormerLayer(nn.Module):
def __init__(self, config: InfinityFormerConfig, layer_idx: int):
super().__init__()
self.embed_dim = config.hidden_size
self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)
self.self_attn = LinearAttention(config, layer_idx)
if config.use_memory_attention:
self.mem_attn_layer_norm = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)
self.mem_attn = LinearAttention(config, layer_idx)
self.ffn = GatedFeedForward(config)
self.final_layer_norm = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)
def forward(self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, **kwargs) -> Tuple[torch.Tensor, ...]:
residual = hidden_states
hidden_states = self.self_attn_layer_norm(hidden_states)
hidden_states = self.self_attn(hidden_states, attention_mask=attention_mask, **kwargs)[0]
hidden_states = residual + hidden_states
if hasattr(self, 'mem_attn'):
mem_residual = hidden_states
hidden_states = self.mem_attn_layer_norm(hidden_states)
hidden_states = self.mem_attn(hidden_states, attention_mask=attention_mask, **kwargs)[0]
hidden_states = mem_residual + hidden_states
hidden_states = self.ffn(hidden_states)
hidden_states = self.final_layer_norm(hidden_states)
return (hidden_states,)
class InfinityFormerEmbeddings(nn.Module):
def __init__(self, config: InfinityFormerConfig):
super().__init__()
self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id if hasattr(config, 'pad_token_id') else 0)
self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size)
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
self.register_buffer("position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)), persistent=False)
def forward(self, input_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None):
seq_length = input_ids.shape[1] if input_ids is not None else inputs_embeds.shape[1]
if position_ids is None:
position_ids = self.position_ids[:, :seq_length]
if inputs_embeds is None:
inputs_embeds = self.word_embeddings(input_ids)
position_embeddings = self.position_embeddings(position_ids)
embeddings = inputs_embeds + position_embeddings
embeddings = self.LayerNorm(embeddings)
embeddings = self.dropout(embeddings)
return embeddings
class InfinityFormerPreTrainedModel(PreTrainedModel):
config_class = InfinityFormerConfig
base_model_prefix = "model"
supports_gradient_checkpointing = True
_no_split_modules = ["InfinityFormerLayer"]
def _init_weights(self, module):
std = self.config.initializer_range
if isinstance(module, nn.Linear):
module.weight.data.normal_(mean=0.0, std=std)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=std)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
class InfinityFormerModel(InfinityFormerPreTrainedModel):
def __init__(self, config: InfinityFormerConfig):
super().__init__(config)
self.config = config
self.embeddings = InfinityFormerEmbeddings(config)
self.layers = nn.ModuleList([InfinityFormerLayer(config, layer_idx=i) for i in range(config.num_hidden_layers)])
self.gradient_checkpointing = False
self.post_init()
def get_input_embeddings(self):
return self.embeddings.word_embeddings
def set_input_embeddings(self, value):
self.embeddings.word_embeddings = value
def forward(self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[List[torch.FloatTensor]] = None, inputs_embeds: Optional[torch.FloatTensor] = None, use_cache: Optional[bool] = None, return_dict: Optional[bool] = None, **kwargs) -> Union[Tuple, BaseModelOutputWithPast]:
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
hidden_states = self.embeddings(input_ids=input_ids, position_ids=position_ids, inputs_embeds=inputs_embeds)
for layer_module in self.layers:
if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpoint(layer_module, hidden_states, attention_mask)
else:
layer_outputs = layer_module(hidden_states, attention_mask=attention_mask)
hidden_states = layer_outputs[0]
if not return_dict:
return (hidden_states,)
return BaseModelOutputWithPast(last_hidden_state=hidden_states, past_key_values=None, hidden_states=None, attentions=None)
class InfinityFormerForCausalLM(GenerationMixin, InfinityFormerPreTrainedModel):
_auto_class = "AutoModelForCausalLM"
def __init__(self, config: InfinityFormerConfig):
super().__init__(config)
self.model = InfinityFormerModel(config)
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
self.post_init()
def get_input_embeddings(self):
return self.model.get_input_embeddings()
def set_input_embeddings(self, value):
self.model.set_input_embeddings(value)
def get_output_embeddings(self):
return self.lm_head
def set_output_embeddings(self, new_embeddings):
self.lm_head = new_embeddings
def tie_weights(self):
if self.config.tie_word_embeddings:
output_embeddings = self.get_output_embeddings()
input_embeddings = self.get_input_embeddings()
output_embeddings.weight = input_embeddings.weight
if getattr(output_embeddings, "bias", None) is not None:
output_embeddings.bias.data = nn.functional.pad(
output_embeddings.bias.data,
(0, output_embeddings.weight.shape[0] - output_embeddings.bias.shape[0]),
"constant",
0,
)
if hasattr(self, "tie_weights_post_actions"):
self.tie_weights_post_actions()
def forward(self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[List[torch.FloatTensor]] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, **kwargs) -> Union[Tuple, CausalLMOutputWithPast]:
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.model(
input_ids=input_ids, attention_mask=attention_mask, position_ids=position_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, use_cache=use_cache, return_dict=return_dict, **kwargs
)
sequence_output = outputs[0]
lm_logits = self.lm_head(sequence_output)
loss = None
if labels is not None:
shift_logits = lm_logits[..., :-1, :].contiguous()
shift_labels = labels[..., 1:].contiguous()
loss_fct = nn.CrossEntropyLoss()
loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1))
if not return_dict:
output = (lm_logits,) + outputs[1:]
return ((loss,) + output) if loss is not None else output
return CausalLMOutputWithPast(loss=loss, logits=lm_logits, past_key_values=outputs.past_key_values, hidden_states=outputs.hidden_states, attentions=outputs.attentions)
def set_to_generation_mode(self):
"""Sets the model to generation mode."""
self.eval() # Set the entire model to evaluation mode
|