Create modeling_quasrav4.py
Browse files- modeling_quasrav4.py +268 -0
modeling_quasrav4.py
ADDED
@@ -0,0 +1,268 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
import torch
|
3 |
+
import torch.nn as nn
|
4 |
+
import torch.nn.functional as F
|
5 |
+
from typing import Optional, Tuple, List, Union
|
6 |
+
|
7 |
+
from transformers import PreTrainedModel
|
8 |
+
from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast
|
9 |
+
from transformers.utils import logging
|
10 |
+
|
11 |
+
from .configuration_quasrav4 import QuasraV4Config
|
12 |
+
|
13 |
+
logger = logging.get_logger(__name__)
|
14 |
+
|
15 |
+
# --- Helper Modules ---
|
16 |
+
|
17 |
+
class RotaryPositionEmbedding(nn.Module):
|
18 |
+
def __init__(self, dim: int, base: int = 10000):
|
19 |
+
super().__init__()
|
20 |
+
self.dim = dim
|
21 |
+
self.base = base
|
22 |
+
inv_freq = 1.0 / (base ** (torch.arange(0, dim, 2).float() / dim))
|
23 |
+
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
24 |
+
|
25 |
+
def _get_rotary_embeddings(self, x: torch.Tensor, seq_dim: int = -2) -> Tuple[torch.Tensor, torch.Tensor]:
|
26 |
+
seq_len = x.size(seq_dim)
|
27 |
+
t = torch.arange(seq_len, device=x.device, dtype=self.inv_freq.dtype)
|
28 |
+
freqs = torch.einsum('i,j->ij', t, self.inv_freq)
|
29 |
+
emb = torch.cat((freqs, freqs), dim=-1)
|
30 |
+
return emb.cos(), emb.sin()
|
31 |
+
|
32 |
+
def rotate_half(self, x: torch.Tensor) -> torch.Tensor:
|
33 |
+
x1, x2 = x.chunk(2, dim=-1)
|
34 |
+
return torch.cat((-x2, x1), dim=-1)
|
35 |
+
|
36 |
+
def apply_rotary_pos_emb(self, x: torch.Tensor, cos: torch.Tensor, sin: torch.Tensor) -> torch.Tensor:
|
37 |
+
return (x * cos) + (self.rotate_half(x) * sin)
|
38 |
+
|
39 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
40 |
+
cos, sin = self._get_rotary_embeddings(x, seq_dim=1)
|
41 |
+
return self.apply_rotary_pos_emb(x, cos.unsqueeze(0).unsqueeze(2), sin.unsqueeze(0).unsqueeze(2))
|
42 |
+
|
43 |
+
class KernelFunction(nn.Module):
|
44 |
+
def __init__(self, config: QuasraV4Config):
|
45 |
+
super().__init__()
|
46 |
+
self.kernel_type = config.kernel_type
|
47 |
+
self.epsilon = config.kernel_epsilon
|
48 |
+
if self.kernel_type == 'learnable':
|
49 |
+
self.temperature = nn.Parameter(torch.ones(1) * 0.1)
|
50 |
+
|
51 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
52 |
+
if self.kernel_type == 'elu':
|
53 |
+
return F.elu(x) + 1.0 + self.epsilon
|
54 |
+
elif self.kernel_type == 'relu':
|
55 |
+
return F.relu(x) + self.epsilon
|
56 |
+
elif self.kernel_type == 'learnable':
|
57 |
+
return F.elu(x * self.temperature) + 1.0 + self.epsilon
|
58 |
+
else:
|
59 |
+
raise ValueError(f"Unknown kernel type: {self.kernel_type}")
|
60 |
+
|
61 |
+
class GatedFeedForward(nn.Module):
|
62 |
+
def __init__(self, config: QuasraV4Config):
|
63 |
+
super().__init__()
|
64 |
+
self.hidden_size = config.hidden_size
|
65 |
+
self.intermediate_size = config.intermediate_size
|
66 |
+
self.fc1 = nn.Linear(self.hidden_size, self.intermediate_size * 2)
|
67 |
+
self.fc2 = nn.Linear(self.intermediate_size, self.hidden_size)
|
68 |
+
self.activation_dropout = nn.Dropout(config.hidden_dropout_prob)
|
69 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
70 |
+
self.layer_norm = nn.LayerNorm(self.hidden_size, eps=config.layer_norm_eps)
|
71 |
+
|
72 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
73 |
+
residual = hidden_states
|
74 |
+
hidden_states = self.layer_norm(hidden_states)
|
75 |
+
hidden_states, gate = self.fc1(hidden_states).chunk(2, dim=-1)
|
76 |
+
hidden_states = F.gelu(hidden_states) * torch.sigmoid(gate)
|
77 |
+
hidden_states = self.activation_dropout(hidden_states)
|
78 |
+
hidden_states = self.fc2(hidden_states)
|
79 |
+
hidden_states = self.dropout(hidden_states)
|
80 |
+
return hidden_states + residual
|
81 |
+
|
82 |
+
class LinearAttention(nn.Module):
|
83 |
+
def __init__(self, config: QuasraV4Config, layer_idx: int = 0):
|
84 |
+
super().__init__()
|
85 |
+
self.hidden_size = config.hidden_size
|
86 |
+
self.num_heads = config.num_attention_heads
|
87 |
+
self.head_dim = self.hidden_size // self.num_heads
|
88 |
+
self.layer_idx = layer_idx
|
89 |
+
self.q_proj = nn.Linear(self.hidden_size, self.hidden_size)
|
90 |
+
self.k_proj = nn.Linear(self.hidden_size, self.hidden_size)
|
91 |
+
self.v_proj = nn.Linear(self.hidden_size, self.hidden_size)
|
92 |
+
self.out_proj = nn.Linear(self.hidden_size, self.hidden_size)
|
93 |
+
self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
|
94 |
+
self.kernel = KernelFunction(config)
|
95 |
+
self.use_memory = False # Memory is disabled in this version
|
96 |
+
self.use_rotary = config.use_rotary_embeddings
|
97 |
+
if self.use_rotary:
|
98 |
+
self.rotary_emb = RotaryPositionEmbedding(self.head_dim, config.rotary_embedding_base)
|
99 |
+
|
100 |
+
def forward(self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, **kwargs) -> Tuple[torch.Tensor, Optional[torch.Tensor]]:
|
101 |
+
batch_size, seq_len, _ = hidden_states.size()
|
102 |
+
q = self.q_proj(hidden_states)
|
103 |
+
k = self.k_proj(hidden_states)
|
104 |
+
v = self.v_proj(hidden_states)
|
105 |
+
q = q.view(batch_size, seq_len, self.num_heads, self.head_dim)
|
106 |
+
k = k.view(batch_size, seq_len, self.num_heads, self.head_dim)
|
107 |
+
v = v.view(batch_size, seq_len, self.num_heads, self.head_dim)
|
108 |
+
if self.use_rotary:
|
109 |
+
q = self.rotary_emb(q)
|
110 |
+
k = self.rotary_emb(k)
|
111 |
+
q = self.kernel(q)
|
112 |
+
k = self.kernel(k)
|
113 |
+
q_for_sdpa = q.transpose(1, 2)
|
114 |
+
k_for_sdpa = k.transpose(1, 2)
|
115 |
+
v_for_sdpa = v.transpose(1, 2)
|
116 |
+
bool_attention_mask = None
|
117 |
+
if attention_mask is not None:
|
118 |
+
if attention_mask.dim() == 2:
|
119 |
+
attention_mask = attention_mask.unsqueeze(1).unsqueeze(1)
|
120 |
+
bool_attention_mask = attention_mask < 0
|
121 |
+
context_output = F.scaled_dot_product_attention(
|
122 |
+
q_for_sdpa, k_for_sdpa, v_for_sdpa, attn_mask=bool_attention_mask, dropout_p=self.dropout.p if self.training else 0.0
|
123 |
+
)
|
124 |
+
context_output = context_output.transpose(1, 2)
|
125 |
+
final_output = context_output.reshape(batch_size, seq_len, self.hidden_size)
|
126 |
+
final_output = self.out_proj(final_output)
|
127 |
+
final_output = self.dropout(final_output)
|
128 |
+
return final_output, None
|
129 |
+
|
130 |
+
# --- Main Model Components ---
|
131 |
+
|
132 |
+
class QuasraV4Layer(nn.Module):
|
133 |
+
def __init__(self, config: QuasraV4Config, layer_idx: int):
|
134 |
+
super().__init__()
|
135 |
+
self.embed_dim = config.hidden_size
|
136 |
+
self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)
|
137 |
+
self.self_attn = LinearAttention(config, layer_idx)
|
138 |
+
self.ffn = GatedFeedForward(config)
|
139 |
+
|
140 |
+
def forward(self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, **kwargs) -> Tuple[torch.Tensor, ...]:
|
141 |
+
residual = hidden_states
|
142 |
+
hidden_states_ln = self.self_attn_layer_norm(hidden_states)
|
143 |
+
attn_outputs, _ = self.self_attn(hidden_states=hidden_states_ln, attention_mask=attention_mask, **kwargs)
|
144 |
+
hidden_states = residual + attn_outputs
|
145 |
+
hidden_states = self.ffn(hidden_states)
|
146 |
+
return (hidden_states,)
|
147 |
+
|
148 |
+
class QuasraV4Embeddings(nn.Module):
|
149 |
+
def __init__(self, config: QuasraV4Config):
|
150 |
+
super().__init__()
|
151 |
+
self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id if hasattr(config, 'pad_token_id') else 0)
|
152 |
+
self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size)
|
153 |
+
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
154 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
155 |
+
self.register_buffer("position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)), persistent=False)
|
156 |
+
|
157 |
+
def forward(self, input_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None):
|
158 |
+
seq_length = input_ids.shape[1] if input_ids is not None else inputs_embeds.shape[1]
|
159 |
+
if position_ids is None:
|
160 |
+
position_ids = self.position_ids[:, :seq_length]
|
161 |
+
if inputs_embeds is None:
|
162 |
+
inputs_embeds = self.word_embeddings(input_ids)
|
163 |
+
position_embeddings = self.position_embeddings(position_ids)
|
164 |
+
embeddings = inputs_embeds + position_embeddings
|
165 |
+
embeddings = self.LayerNorm(embeddings)
|
166 |
+
embeddings = self.dropout(embeddings)
|
167 |
+
return embeddings
|
168 |
+
|
169 |
+
class QuasraV4PreTrainedModel(PreTrainedModel):
|
170 |
+
config_class = QuasraV4Config
|
171 |
+
base_model_prefix = "model"
|
172 |
+
supports_gradient_checkpointing = True
|
173 |
+
_no_split_modules = ["QuasraV4Layer"]
|
174 |
+
|
175 |
+
def _init_weights(self, module):
|
176 |
+
std = self.config.initializer_range
|
177 |
+
if isinstance(module, nn.Linear):
|
178 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
179 |
+
if module.bias is not None:
|
180 |
+
module.bias.data.zero_()
|
181 |
+
elif isinstance(module, nn.Embedding):
|
182 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
183 |
+
if module.padding_idx is not None:
|
184 |
+
module.weight.data[module.padding_idx].zero_()
|
185 |
+
|
186 |
+
class QuasraV4Model(QuasraV4PreTrainedModel):
|
187 |
+
def __init__(self, config: QuasraV4Config):
|
188 |
+
super().__init__(config)
|
189 |
+
self.config = config
|
190 |
+
self.embeddings = QuasraV4Embeddings(config)
|
191 |
+
self.layers = nn.ModuleList([QuasraV4Layer(config, layer_idx=i) for i in range(config.num_hidden_layers)])
|
192 |
+
self.final_layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
193 |
+
self.gradient_checkpointing = False
|
194 |
+
self.post_init()
|
195 |
+
|
196 |
+
def get_input_embeddings(self):
|
197 |
+
return self.embeddings.word_embeddings
|
198 |
+
|
199 |
+
def set_input_embeddings(self, value):
|
200 |
+
self.embeddings.word_embeddings = value
|
201 |
+
|
202 |
+
def forward(self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[List[torch.FloatTensor]] = None, inputs_embeds: Optional[torch.FloatTensor] = None, use_cache: Optional[bool] = None, return_dict: Optional[bool] = None, **kwargs) -> Union[Tuple, BaseModelOutputWithPast]:
|
203 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
204 |
+
hidden_states = self.embeddings(input_ids=input_ids, position_ids=position_ids, inputs_embeds=inputs_embeds)
|
205 |
+
for layer_module in self.layers:
|
206 |
+
if self.gradient_checkpointing and self.training:
|
207 |
+
layer_outputs = self._gradient_checkpoint(layer_module, hidden_states, attention_mask)
|
208 |
+
else:
|
209 |
+
layer_outputs = layer_module(hidden_states, attention_mask=attention_mask)
|
210 |
+
hidden_states = layer_outputs[0]
|
211 |
+
hidden_states = self.final_layer_norm(hidden_states)
|
212 |
+
if not return_dict:
|
213 |
+
return (hidden_states,)
|
214 |
+
return BaseModelOutputWithPast(last_hidden_state=hidden_states, past_key_values=None, hidden_states=None, attentions=None)
|
215 |
+
|
216 |
+
class QuasraV4ForCausalLM(QuasraV4PreTrainedModel):
|
217 |
+
_auto_class = "AutoModelForCausalLM"
|
218 |
+
|
219 |
+
def __init__(self, config: QuasraV4Config):
|
220 |
+
super().__init__(config)
|
221 |
+
self.model = QuasraV4Model(config)
|
222 |
+
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
223 |
+
self.post_init()
|
224 |
+
|
225 |
+
def get_input_embeddings(self):
|
226 |
+
return self.model.get_input_embeddings()
|
227 |
+
|
228 |
+
def set_input_embeddings(self, value):
|
229 |
+
self.model.set_input_embeddings(value)
|
230 |
+
|
231 |
+
def get_output_embeddings(self):
|
232 |
+
return self.lm_head
|
233 |
+
|
234 |
+
def set_output_embeddings(self, new_embeddings):
|
235 |
+
self.lm_head = new_embeddings
|
236 |
+
|
237 |
+
def tie_weights(self):
|
238 |
+
if self.config.tie_word_embeddings:
|
239 |
+
output_embeddings = self.get_output_embeddings()
|
240 |
+
input_embeddings = self.get_input_embeddings()
|
241 |
+
output_embeddings.weight = input_embeddings.weight
|
242 |
+
if getattr(output_embeddings, "bias", None) is not None:
|
243 |
+
output_embeddings.bias.data = nn.functional.pad(
|
244 |
+
output_embeddings.bias.data,
|
245 |
+
(0, output_embeddings.weight.shape[0] - output_embeddings.bias.shape[0]),
|
246 |
+
"constant",
|
247 |
+
0,
|
248 |
+
)
|
249 |
+
if hasattr(self, "tie_weights_post_actions"):
|
250 |
+
self.tie_weights_post_actions()
|
251 |
+
|
252 |
+
def forward(self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[List[torch.FloatTensor]] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, **kwargs) -> Union[Tuple, CausalLMOutputWithPast]:
|
253 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
254 |
+
outputs = self.model(
|
255 |
+
input_ids=input_ids, attention_mask=attention_mask, position_ids=position_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, use_cache=use_cache, return_dict=return_dict, **kwargs
|
256 |
+
)
|
257 |
+
sequence_output = outputs[0]
|
258 |
+
lm_logits = self.lm_head(sequence_output)
|
259 |
+
loss = None
|
260 |
+
if labels is not None:
|
261 |
+
shift_logits = lm_logits[..., :-1, :].contiguous()
|
262 |
+
shift_labels = labels[..., 1:].contiguous()
|
263 |
+
loss_fct = nn.CrossEntropyLoss()
|
264 |
+
loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1))
|
265 |
+
if not return_dict:
|
266 |
+
output = (lm_logits,) + outputs[1:]
|
267 |
+
return ((loss,) + output) if loss is not None else output
|
268 |
+
return CausalLMOutputWithPast(loss=loss, logits=lm_logits, past_key_values=outputs.past_key_values, hidden_states=outputs.hidden_states, attentions=outputs.attentions)
|