Commit
·
529bea9
1
Parent(s):
4e98941
Create README.md
Browse files
README.md
ADDED
|
@@ -0,0 +1,43 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
## Article
|
| 2 |
+
[Medium article](https://medium.com/@shahrukhx01/multi-task-learning-with-transformers-part-1-multi-prediction-heads-b7001cf014bf)
|
| 3 |
+
## Demo Notebook
|
| 4 |
+
[Colab Notebook Multi-task Query classifiers](https://colab.research.google.com/drive/1R7WcLHxDsVvZXPhr5HBgIWa3BlSZKY6p?usp=sharing)
|
| 5 |
+
## Clone the model repo
|
| 6 |
+
```bash
|
| 7 |
+
git clone https://huggingface.co/shahrukhx01/bert-multitask-query-classifiers
|
| 8 |
+
```
|
| 9 |
+
```python
|
| 10 |
+
%cd bert-multitask-query-classifiers/
|
| 11 |
+
```
|
| 12 |
+
## Load models
|
| 13 |
+
```python
|
| 14 |
+
from multitask_model import BertForSequenceClassification
|
| 15 |
+
from transformers import AutoTokenizer
|
| 16 |
+
import torch
|
| 17 |
+
model = BertForSequenceClassification.from_pretrained(
|
| 18 |
+
"shahrukhx01/bert-multitask-query-classifiers",
|
| 19 |
+
task_labels_map={"quora_keyword_pairs": 2, "spaadia_squad_pairs": 2},
|
| 20 |
+
)
|
| 21 |
+
tokenizer = AutoTokenizer.from_pretrained("shahrukhx01/bert-multitask-query-classifiers")
|
| 22 |
+
```
|
| 23 |
+
## Run inference on both Tasks
|
| 24 |
+
```python
|
| 25 |
+
from multitask_model import BertForSequenceClassification
|
| 26 |
+
from transformers import AutoTokenizer
|
| 27 |
+
import torch
|
| 28 |
+
model = BertForSequenceClassification.from_pretrained(
|
| 29 |
+
"shahrukhx01/bert-multitask-query-classifiers",
|
| 30 |
+
task_labels_map={"quora_keyword_pairs": 2, "spaadia_squad_pairs": 2},
|
| 31 |
+
)
|
| 32 |
+
tokenizer = AutoTokenizer.from_pretrained("shahrukhx01/bert-multitask-query-classifiers")
|
| 33 |
+
|
| 34 |
+
## Keyword vs Statement/Question Classifier
|
| 35 |
+
input = ["keyword query", "is this a keyword query?"]
|
| 36 |
+
task_name="quora_keyword_pairs"
|
| 37 |
+
sequence = tokenizer(input, padding=True, return_tensors="pt")['input_ids']
|
| 38 |
+
logits = model(sequence, task_name=task_name)[0]
|
| 39 |
+
predictions = torch.argmax(torch.softmax(logits, dim=1).detach().cpu(), axis=1)
|
| 40 |
+
for input, prediction in zip(input, predictions):
|
| 41 |
+
print(f"task: {task_name}, input: {input} \n prediction=> {prediction}")
|
| 42 |
+
print()
|
| 43 |
+
```
|