Commit
·
4e98941
1
Parent(s):
254528a
add model files
Browse files- multitask_model.py +144 -0
- test.py +0 -0
multitask_model.py
ADDED
|
@@ -0,0 +1,144 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Implementation borrowed from transformers package and extended to support multiple prediction heads:
|
| 3 |
+
|
| 4 |
+
https://github.com/huggingface/transformers/blob/master/src/transformers/models/bert/modeling_bert.py
|
| 5 |
+
"""
|
| 6 |
+
|
| 7 |
+
import torch
|
| 8 |
+
from torch import nn
|
| 9 |
+
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
|
| 10 |
+
|
| 11 |
+
import transformers
|
| 12 |
+
from transformers import BertTokenizer
|
| 13 |
+
from transformers import models
|
| 14 |
+
from transformers.modeling_outputs import SequenceClassifierOutput
|
| 15 |
+
|
| 16 |
+
from transformers.models.bert.configuration_bert import BertConfig
|
| 17 |
+
from transformers.models.bert.modeling_bert import (
|
| 18 |
+
BertPreTrainedModel,
|
| 19 |
+
BERT_INPUTS_DOCSTRING,
|
| 20 |
+
_TOKENIZER_FOR_DOC,
|
| 21 |
+
_CHECKPOINT_FOR_DOC,
|
| 22 |
+
_CONFIG_FOR_DOC,
|
| 23 |
+
BertModel,
|
| 24 |
+
)
|
| 25 |
+
|
| 26 |
+
from transformers.file_utils import (
|
| 27 |
+
add_code_sample_docstrings,
|
| 28 |
+
add_start_docstrings_to_model_forward,
|
| 29 |
+
)
|
| 30 |
+
|
| 31 |
+
|
| 32 |
+
class BertForSequenceClassification(BertPreTrainedModel):
|
| 33 |
+
def __init__(self, config, **kwargs):
|
| 34 |
+
super().__init__(transformers.PretrainedConfig())
|
| 35 |
+
self.num_labels = kwargs.get("task_labels_map", {})
|
| 36 |
+
self.config = config
|
| 37 |
+
|
| 38 |
+
self.bert = BertModel(config)
|
| 39 |
+
classifier_dropout = (
|
| 40 |
+
config.classifier_dropout
|
| 41 |
+
if config.classifier_dropout is not None
|
| 42 |
+
else config.hidden_dropout_prob
|
| 43 |
+
)
|
| 44 |
+
self.dropout = nn.Dropout(classifier_dropout)
|
| 45 |
+
## add task specific output heads
|
| 46 |
+
self.classifier1 = nn.Linear(
|
| 47 |
+
config.hidden_size, list(self.num_labels.values())[0]
|
| 48 |
+
)
|
| 49 |
+
self.classifier2 = nn.Linear(
|
| 50 |
+
config.hidden_size, list(self.num_labels.values())[1]
|
| 51 |
+
)
|
| 52 |
+
|
| 53 |
+
self.init_weights()
|
| 54 |
+
|
| 55 |
+
@add_start_docstrings_to_model_forward(
|
| 56 |
+
BERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")
|
| 57 |
+
)
|
| 58 |
+
@add_code_sample_docstrings(
|
| 59 |
+
tokenizer_class=_TOKENIZER_FOR_DOC,
|
| 60 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
| 61 |
+
output_type=SequenceClassifierOutput,
|
| 62 |
+
config_class=_CONFIG_FOR_DOC,
|
| 63 |
+
)
|
| 64 |
+
def forward(
|
| 65 |
+
self,
|
| 66 |
+
input_ids=None,
|
| 67 |
+
attention_mask=None,
|
| 68 |
+
token_type_ids=None,
|
| 69 |
+
position_ids=None,
|
| 70 |
+
head_mask=None,
|
| 71 |
+
inputs_embeds=None,
|
| 72 |
+
labels=None,
|
| 73 |
+
output_attentions=None,
|
| 74 |
+
output_hidden_states=None,
|
| 75 |
+
return_dict=None,
|
| 76 |
+
task_name=None,
|
| 77 |
+
):
|
| 78 |
+
r"""
|
| 79 |
+
labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`):
|
| 80 |
+
Labels for computing the sequence classification/regression loss. Indices should be in :obj:`[0, ...,
|
| 81 |
+
config.num_labels - 1]`. If :obj:`config.num_labels == 1` a regression loss is computed (Mean-Square loss),
|
| 82 |
+
If :obj:`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
| 83 |
+
"""
|
| 84 |
+
return_dict = (
|
| 85 |
+
return_dict if return_dict is not None else self.config.use_return_dict
|
| 86 |
+
)
|
| 87 |
+
|
| 88 |
+
outputs = self.bert(
|
| 89 |
+
input_ids,
|
| 90 |
+
attention_mask=attention_mask,
|
| 91 |
+
token_type_ids=token_type_ids,
|
| 92 |
+
position_ids=position_ids,
|
| 93 |
+
head_mask=head_mask,
|
| 94 |
+
inputs_embeds=inputs_embeds,
|
| 95 |
+
output_attentions=output_attentions,
|
| 96 |
+
output_hidden_states=output_hidden_states,
|
| 97 |
+
return_dict=return_dict,
|
| 98 |
+
)
|
| 99 |
+
|
| 100 |
+
pooled_output = outputs[1]
|
| 101 |
+
|
| 102 |
+
pooled_output = self.dropout(pooled_output)
|
| 103 |
+
logits = None
|
| 104 |
+
if task_name == list(self.num_labels.keys())[0]:
|
| 105 |
+
logits = self.classifier1(pooled_output)
|
| 106 |
+
elif task_name == list(self.num_labels.keys())[1]:
|
| 107 |
+
logits = self.classifier2(pooled_output)
|
| 108 |
+
|
| 109 |
+
loss = None
|
| 110 |
+
if labels is not None:
|
| 111 |
+
if self.config.problem_type is None:
|
| 112 |
+
if self.num_labels[task_name] == 1:
|
| 113 |
+
self.config.problem_type = "regression"
|
| 114 |
+
elif self.num_labels[task_name] > 1 and (
|
| 115 |
+
labels.dtype == torch.long or labels.dtype == torch.int
|
| 116 |
+
):
|
| 117 |
+
self.config.problem_type = "single_label_classification"
|
| 118 |
+
else:
|
| 119 |
+
self.config.problem_type = "multi_label_classification"
|
| 120 |
+
|
| 121 |
+
if self.config.problem_type == "regression":
|
| 122 |
+
loss_fct = MSELoss()
|
| 123 |
+
if self.num_labels[task_name] == 1:
|
| 124 |
+
loss = loss_fct(logits.squeeze(), labels.squeeze())
|
| 125 |
+
else:
|
| 126 |
+
loss = loss_fct(logits, labels)
|
| 127 |
+
elif self.config.problem_type == "single_label_classification":
|
| 128 |
+
loss_fct = CrossEntropyLoss()
|
| 129 |
+
loss = loss_fct(
|
| 130 |
+
logits.view(-1, self.num_labels[task_name]), labels.view(-1)
|
| 131 |
+
)
|
| 132 |
+
elif self.config.problem_type == "multi_label_classification":
|
| 133 |
+
loss_fct = BCEWithLogitsLoss()
|
| 134 |
+
loss = loss_fct(logits, labels)
|
| 135 |
+
if not return_dict:
|
| 136 |
+
output = (logits,) + outputs[2:]
|
| 137 |
+
return ((loss,) + output) if loss is not None else output
|
| 138 |
+
|
| 139 |
+
return SequenceClassifierOutput(
|
| 140 |
+
loss=loss,
|
| 141 |
+
logits=logits,
|
| 142 |
+
hidden_states=outputs.hidden_states,
|
| 143 |
+
attentions=outputs.attentions,
|
| 144 |
+
)
|
test.py
DELETED
|
File without changes
|