|  | --- | 
					
						
						|  | license: apache-2.0 | 
					
						
						|  | library_name: sentence-transformers | 
					
						
						|  | tags: | 
					
						
						|  | - sentence-transformers | 
					
						
						|  | - feature-extraction | 
					
						
						|  | - sentence-similarity | 
					
						
						|  | - transformers | 
					
						
						|  | pipeline_tag: sentence-similarity | 
					
						
						|  | --- | 
					
						
						|  |  | 
					
						
						|  | # sentence-transformers/stsb-mpnet-base-v2 | 
					
						
						|  |  | 
					
						
						|  | This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | ## Usage (Sentence-Transformers) | 
					
						
						|  |  | 
					
						
						|  | Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: | 
					
						
						|  |  | 
					
						
						|  | ``` | 
					
						
						|  | pip install -U sentence-transformers | 
					
						
						|  | ``` | 
					
						
						|  |  | 
					
						
						|  | Then you can use the model like this: | 
					
						
						|  |  | 
					
						
						|  | ```python | 
					
						
						|  | from sentence_transformers import SentenceTransformer | 
					
						
						|  | sentences = ["This is an example sentence", "Each sentence is converted"] | 
					
						
						|  |  | 
					
						
						|  | model = SentenceTransformer('sentence-transformers/stsb-mpnet-base-v2') | 
					
						
						|  | embeddings = model.encode(sentences) | 
					
						
						|  | print(embeddings) | 
					
						
						|  | ``` | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | ## Usage (HuggingFace Transformers) | 
					
						
						|  | Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. | 
					
						
						|  |  | 
					
						
						|  | ```python | 
					
						
						|  | from transformers import AutoTokenizer, AutoModel | 
					
						
						|  | import torch | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | #Mean Pooling - Take attention mask into account for correct averaging | 
					
						
						|  | def mean_pooling(model_output, attention_mask): | 
					
						
						|  | token_embeddings = model_output[0] #First element of model_output contains all token embeddings | 
					
						
						|  | input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() | 
					
						
						|  | return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | # Sentences we want sentence embeddings for | 
					
						
						|  | sentences = ['This is an example sentence', 'Each sentence is converted'] | 
					
						
						|  |  | 
					
						
						|  | # Load model from HuggingFace Hub | 
					
						
						|  | tokenizer = AutoTokenizer.from_pretrained('sentence-transformers/stsb-mpnet-base-v2') | 
					
						
						|  | model = AutoModel.from_pretrained('sentence-transformers/stsb-mpnet-base-v2') | 
					
						
						|  |  | 
					
						
						|  | # Tokenize sentences | 
					
						
						|  | encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') | 
					
						
						|  |  | 
					
						
						|  | # Compute token embeddings | 
					
						
						|  | with torch.no_grad(): | 
					
						
						|  | model_output = model(**encoded_input) | 
					
						
						|  |  | 
					
						
						|  | # Perform pooling. In this case, max pooling. | 
					
						
						|  | sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) | 
					
						
						|  |  | 
					
						
						|  | print("Sentence embeddings:") | 
					
						
						|  | print(sentence_embeddings) | 
					
						
						|  | ``` | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | ## Full Model Architecture | 
					
						
						|  | ``` | 
					
						
						|  | SentenceTransformer( | 
					
						
						|  | (0): Transformer({'max_seq_length': 75, 'do_lower_case': False}) with Transformer model: MPNetModel | 
					
						
						|  | (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) | 
					
						
						|  | ) | 
					
						
						|  | ``` | 
					
						
						|  |  | 
					
						
						|  | ## Citing & Authors | 
					
						
						|  |  | 
					
						
						|  | This model was trained by [sentence-transformers](https://www.sbert.net/). | 
					
						
						|  |  | 
					
						
						|  | If you find this model helpful, feel free to cite our publication [Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks](https://arxiv.org/abs/1908.10084): | 
					
						
						|  | ```bibtex | 
					
						
						|  | @inproceedings{reimers-2019-sentence-bert, | 
					
						
						|  | title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", | 
					
						
						|  | author = "Reimers, Nils and Gurevych, Iryna", | 
					
						
						|  | booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", | 
					
						
						|  | month = "11", | 
					
						
						|  | year = "2019", | 
					
						
						|  | publisher = "Association for Computational Linguistics", | 
					
						
						|  | url = "http://arxiv.org/abs/1908.10084", | 
					
						
						|  | } | 
					
						
						|  | ``` |