t5-base-mpdocvqa / README.md
rubentito's picture
Update README.md
4a545aa
|
raw
history blame
2.82 kB
---
license: gpl-3.0
tags:
- DocVQA
- Document Question Answering
- Document Visual Question Answering
datasets:
- rubentito/mp-docvqa
language:
- en
---
# T5 base fine-tuned on MP-DocVQA
This is [pretrained](https://huggingface.co/t5-base) T5 base fine-tuned on Multipage DocVQA (MP-DocVQA) dataset.
This model was used as a baseline in [Hierarchical multimodal transformers for Multi-Page DocVQA](https://arxiv.org/pdf/2212.05935.pdf).
- Results on the MP-DocVQA dataset are reported in Table 2.
- Training hyperparameters can be found in Table 8 of Appendix D.
## How to use
Here is how to use this model to get the features of a given text in PyTorch:
```python
import torch
from transformers import T5Tokenizer, T5ForConditionalGeneration
tokenizer = LongformerTokenizerFast.from_pretrained("rubentito/t5-base-mpdocvqa")
model = LongformerForQuestionAnswering.from_pretrained("rubentito/t5-base-mpdocvqa")
context = "Huggingface has democratized NLP. Huge thanks to Huggingface for this."
question = "What has Huggingface done?"
input_text = "question: {:s} context: {:s}".format(question, context)
encoding = tokenizer(input_text, return_tensors="pt")
output = self.model.generate(**encoding)
answer = tokenizer.decode(output['sequences'], skip_special_tokens=True)
```
## Model results
Extended experimentation can be found in Table 2 of [Hierarchical multimodal transformers for Multi-Page DocVQA](https://arxiv.org/pdf/2212.05935.pdf).
You can also check the live leaderboard at the [RRC Portal](https://rrc.cvc.uab.es/?ch=17&com=evaluation&task=4).
| Model | HF name | ANLS | APPA |
|-----------------------------------------------------------------------------------|:--------------------------------------|:-------------:|:---------:|
| [Bert-large](https://huggingface.co/rubentito/bert-large-mpdocvqa) | rubentito/bert-large-mpdocvqa | 0.4183 | 51.6177 |
| [Longformer-base](https://huggingface.co/rubentito/longformer-base-mpdocvqa) | rubentito/longformer-base-mpdocvqa | 0.5287 | 71.1696 |
| [BigBird ITC base](https://huggingface.co/rubentito/bigbird-base-itc-mpdocvqa) | rubentito/bigbird-base-itc-mpdocvqa | 0.4929 | 67.5433 |
| [LayoutLMv3 base](https://huggingface.co/rubentito/layoutlmv3-base-mpdocvqa) | rubentito/layoutlmv3-base-mpdocvqa | 0.4538 | 51.9426 |
| [**T5 base**](https://huggingface.co/rubentito/t5-base-mpdocvqa) | rubentito/t5-base-mpdocvqa | 0.5050 | 0.0000 |
| Hi-VT5 | TBA | 0.6201 | 79.23 |
## Citation Information
```tex
@article{tito2022hierarchical,
title={Hierarchical multimodal transformers for Multi-Page DocVQA},
author={Tito, Rub{\`e}n and Karatzas, Dimosthenis and Valveny, Ernest},
journal={arXiv preprint arXiv:2212.05935},
year={2022}
}
```