Upload openvla-7b+example_dataset+b16+lr-0.0005+lora-r32+dropout-0.0--image_aug+example_dataset+b16+lr-0.0005+lora-r32+dropout-0.0--image_aug/modeling_prismatic.py
Browse files
openvla-7b+example_dataset+b16+lr-0.0005+lora-r32+dropout-0.0--image_aug+example_dataset+b16+lr-0.0005+lora-r32+dropout-0.0--image_aug/modeling_prismatic.py
ADDED
|
@@ -0,0 +1,562 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
modeling_prismatic.py
|
| 3 |
+
|
| 4 |
+
Core HuggingFace-style PrismaticPreTrainedModel and PrismaticForConditionalGeneration class definitions, inheriting
|
| 5 |
+
from the default `transformers.PretrainedModel`. Meant to be standalone and self-contained, but exactly replicate the
|
| 6 |
+
logic in `prismatic.models.vlms.prismatic.py`.
|
| 7 |
+
|
| 8 |
+
Note =>> for the time being, not adding the custom HF "docstring" formatting.
|
| 9 |
+
|
| 10 |
+
References [LLaVa, IDEFICS-2]:
|
| 11 |
+
=> https://github.com/huggingface/transformers/blob/main/src/transformers/models/llava/modeling_llava.py
|
| 12 |
+
=> https://github.com/huggingface/transformers/blob/main/src/transformers/models/idefics2/modeling_idefics2.py
|
| 13 |
+
"""
|
| 14 |
+
|
| 15 |
+
import logging
|
| 16 |
+
from dataclasses import dataclass
|
| 17 |
+
from functools import partial
|
| 18 |
+
from typing import Any, Callable, ClassVar, Dict, List, Optional, Tuple, Union
|
| 19 |
+
|
| 20 |
+
import numpy as np
|
| 21 |
+
import timm
|
| 22 |
+
import tokenizers
|
| 23 |
+
import torch
|
| 24 |
+
import torch.nn as nn
|
| 25 |
+
import transformers
|
| 26 |
+
from timm.models.vision_transformer import LayerScale
|
| 27 |
+
from transformers import AutoModelForCausalLM, PretrainedConfig, PreTrainedModel
|
| 28 |
+
from transformers.modeling_outputs import ModelOutput
|
| 29 |
+
|
| 30 |
+
from .configuration_prismatic import OpenVLAConfig, PrismaticConfig
|
| 31 |
+
|
| 32 |
+
# Get Logger
|
| 33 |
+
logger = logging.getLogger(__name__)
|
| 34 |
+
|
| 35 |
+
|
| 36 |
+
# === PyTorch/HuggingFace Default IGNORE_INDEX (for CrossEntropyLoss labels)
|
| 37 |
+
IGNORE_INDEX = -100
|
| 38 |
+
|
| 39 |
+
|
| 40 |
+
# === Utility Functions for Monkey-Patching ===
|
| 41 |
+
def unpack_tuple(fn: Callable[[Any], Tuple[Any]]) -> Callable[[Any], Any]:
|
| 42 |
+
def wrapper(*args: Any, **kwargs: Any) -> Any:
|
| 43 |
+
result = fn(*args, **kwargs)
|
| 44 |
+
return result[0] if isinstance(result, tuple) else result
|
| 45 |
+
|
| 46 |
+
return wrapper
|
| 47 |
+
|
| 48 |
+
|
| 49 |
+
# HF Transformers overwrites parameters with names containing `gamma`; we're going to patch VisionBackbone.LayerScale.
|
| 50 |
+
# =>> TIMM :: https://github.com/huggingface/pytorch-image-models/blob/main/timm/models/vision_transformer.py#L109
|
| 51 |
+
# =>> Transformers :: https://github.com/huggingface/transformers/blob/main/src/transformers/modeling_utils.py#L3960
|
| 52 |
+
def _ls_new_forward(self, x: torch.Tensor) -> torch.Tensor:
|
| 53 |
+
return x.mul_(self.scale_factor) if self.inplace else x * self.scale_factor
|
| 54 |
+
|
| 55 |
+
|
| 56 |
+
def ls_apply_patch(ls_module: LayerScale):
|
| 57 |
+
ls_module.scale_factor = nn.Parameter(ls_module.gamma.clone())
|
| 58 |
+
ls_module.forward = _ls_new_forward.__get__(ls_module, LayerScale)
|
| 59 |
+
del ls_module.gamma
|
| 60 |
+
|
| 61 |
+
|
| 62 |
+
# === Prismatic Vision Backbone (nn.Module) Definitions (w/ Fused Backbone Support) ===
|
| 63 |
+
class PrismaticVisionBackbone(nn.Module):
|
| 64 |
+
def __init__(
|
| 65 |
+
self,
|
| 66 |
+
use_fused_vision_backbone: bool,
|
| 67 |
+
image_sizes: List[int],
|
| 68 |
+
timm_model_ids: List[str],
|
| 69 |
+
timm_override_act_layers: List[Optional[str]],
|
| 70 |
+
) -> None:
|
| 71 |
+
super().__init__()
|
| 72 |
+
self.use_fused_vision_backbone = use_fused_vision_backbone
|
| 73 |
+
|
| 74 |
+
# [Contract] Validate number of (fused) vision backbones, create "alpha" featurizer and Instantiate
|
| 75 |
+
# =>> Note :: Monkey-Patch the `forward()` function of the backbone to ensure FSDP-compatibility
|
| 76 |
+
# Hardcodes `get_intermediate_layers` to return the **SECOND-TO-LAST** layer patches!
|
| 77 |
+
assert len(timm_model_ids) <= 2, "Prismatic models only support up to 2 (fused) vision backbones!"
|
| 78 |
+
self.featurizer = timm.create_model(
|
| 79 |
+
timm_model_ids[0],
|
| 80 |
+
pretrained=False,
|
| 81 |
+
num_classes=0,
|
| 82 |
+
img_size=image_sizes[0],
|
| 83 |
+
act_layer=timm_override_act_layers[0],
|
| 84 |
+
)
|
| 85 |
+
self.featurizer.forward = unpack_tuple(
|
| 86 |
+
partial(self.featurizer.get_intermediate_layers, n={len(self.featurizer.blocks) - 2})
|
| 87 |
+
)
|
| 88 |
+
self.embed_dim = self.featurizer.embed_dim
|
| 89 |
+
|
| 90 |
+
# If `use_fused_vision_backbone` =>> create "beta" featurizer
|
| 91 |
+
if self.use_fused_vision_backbone:
|
| 92 |
+
self.fused_featurizer = timm.create_model(
|
| 93 |
+
timm_model_ids[1],
|
| 94 |
+
pretrained=False,
|
| 95 |
+
num_classes=0,
|
| 96 |
+
img_size=image_sizes[1],
|
| 97 |
+
act_layer=timm_override_act_layers[1],
|
| 98 |
+
)
|
| 99 |
+
self.fused_featurizer.forward = unpack_tuple(
|
| 100 |
+
partial(self.fused_featurizer.get_intermediate_layers, n={len(self.fused_featurizer.blocks) - 2})
|
| 101 |
+
)
|
| 102 |
+
self.embed_dim += self.fused_featurizer.embed_dim
|
| 103 |
+
|
| 104 |
+
# Patch `vision_backbone.featurizer` and `vision_backbone.fused_featurizer` with HF-Compatible LayerScale
|
| 105 |
+
for module in self.featurizer.modules():
|
| 106 |
+
if isinstance(module, LayerScale):
|
| 107 |
+
ls_apply_patch(module)
|
| 108 |
+
|
| 109 |
+
if self.use_fused_vision_backbone:
|
| 110 |
+
for module in self.fused_featurizer.modules():
|
| 111 |
+
if isinstance(module, LayerScale):
|
| 112 |
+
ls_apply_patch(module)
|
| 113 |
+
|
| 114 |
+
def forward(self, pixel_values: torch.Tensor) -> torch.Tensor:
|
| 115 |
+
"""Run image (`pixel_values`) through featurizer; if channel-stacked, then dispatch and sequence stack."""
|
| 116 |
+
if not self.use_fused_vision_backbone:
|
| 117 |
+
return self.featurizer(pixel_values)
|
| 118 |
+
|
| 119 |
+
# Split `pixel_values :: [bsz, 2 * 3, resolution, resolution]` =>> featurize =>> channel stack
|
| 120 |
+
img, img_fused = torch.split(pixel_values, [3, 3], dim=1)
|
| 121 |
+
patches, patches_fused = self.featurizer(img), self.fused_featurizer(img_fused)
|
| 122 |
+
|
| 123 |
+
return torch.cat([patches, patches_fused], dim=2)
|
| 124 |
+
|
| 125 |
+
|
| 126 |
+
# === Prismatic Projector (nn.Module) Definitions ===
|
| 127 |
+
class PrismaticProjector(nn.Module):
|
| 128 |
+
def __init__(self, use_fused_vision_backbone: bool, vision_dim: int, llm_dim: int) -> None:
|
| 129 |
+
super().__init__()
|
| 130 |
+
self.use_fused_vision_backbone = use_fused_vision_backbone
|
| 131 |
+
self.vision_dim, self.llm_dim = vision_dim, llm_dim
|
| 132 |
+
|
| 133 |
+
# Switch on `use_fused_vision_backbone` =>> use slightly different MLPs and projection factors!
|
| 134 |
+
if not self.use_fused_vision_backbone:
|
| 135 |
+
self.fc1 = nn.Linear(self.vision_dim, self.llm_dim, bias=True)
|
| 136 |
+
self.fc2 = nn.Linear(self.llm_dim, self.llm_dim, bias=True)
|
| 137 |
+
self.act_fn1 = nn.GELU()
|
| 138 |
+
else:
|
| 139 |
+
initial_projection_dim = 4 * vision_dim
|
| 140 |
+
self.fc1 = nn.Linear(self.vision_dim, initial_projection_dim, bias=True)
|
| 141 |
+
self.fc2 = nn.Linear(initial_projection_dim, self.llm_dim, bias=True)
|
| 142 |
+
self.fc3 = nn.Linear(self.llm_dim, self.llm_dim, bias=True)
|
| 143 |
+
self.act_fn1 = nn.GELU()
|
| 144 |
+
self.act_fn2 = nn.GELU()
|
| 145 |
+
|
| 146 |
+
def forward(self, img_patches: torch.Tensor) -> torch.Tensor:
|
| 147 |
+
if not self.use_fused_vision_backbone:
|
| 148 |
+
projected_features = self.fc1(img_patches)
|
| 149 |
+
projected_features = self.act_fn1(projected_features)
|
| 150 |
+
projected_features = self.fc2(projected_features)
|
| 151 |
+
else:
|
| 152 |
+
projected_features = self.fc1(img_patches)
|
| 153 |
+
projected_features = self.act_fn1(projected_features)
|
| 154 |
+
projected_features = self.fc2(projected_features)
|
| 155 |
+
projected_features = self.act_fn2(projected_features)
|
| 156 |
+
projected_features = self.fc3(projected_features)
|
| 157 |
+
|
| 158 |
+
return projected_features
|
| 159 |
+
|
| 160 |
+
|
| 161 |
+
# === Main HF Class Definitions ===
|
| 162 |
+
@dataclass
|
| 163 |
+
class PrismaticCausalLMOutputWithPast(ModelOutput):
|
| 164 |
+
"""Base class for Prismatic casual (visually-conditioned) language model outputs; also exposes visual features."""
|
| 165 |
+
|
| 166 |
+
loss: Optional[torch.FloatTensor] = None
|
| 167 |
+
logits: torch.FloatTensor = None
|
| 168 |
+
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
|
| 169 |
+
hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
|
| 170 |
+
attentions: Optional[Tuple[torch.FloatTensor]] = None
|
| 171 |
+
|
| 172 |
+
# Additions for VLMs
|
| 173 |
+
projector_features: Optional[torch.FloatTensor] = None
|
| 174 |
+
|
| 175 |
+
|
| 176 |
+
class PrismaticPreTrainedModel(PreTrainedModel):
|
| 177 |
+
config_class: PretrainedConfig = PrismaticConfig
|
| 178 |
+
base_model_prefix: str = "model"
|
| 179 |
+
supports_gradient_checkpointing: bool = True
|
| 180 |
+
|
| 181 |
+
_no_split_modules: ClassVar[List[str]] = ["PrismaticProjector"]
|
| 182 |
+
_skip_keys_device_placement: str = "past_key_values"
|
| 183 |
+
_supports_flash_attn_2: bool = True
|
| 184 |
+
|
| 185 |
+
def _init_weights(self, module: nn.Module) -> None:
|
| 186 |
+
# Important :: this HF ported version is *not* meant for training from scratch; only inference and fine-tuning!
|
| 187 |
+
# => As such, this init_weights code is not correct; if training VLMs from scratch, use the main codebase at
|
| 188 |
+
# https://github.com/TRI-ML/prismatic-vlms
|
| 189 |
+
std = (
|
| 190 |
+
self.config.initializer_range
|
| 191 |
+
if hasattr(self.config, "initializer_range")
|
| 192 |
+
else self.config.text_config.initializer_range
|
| 193 |
+
)
|
| 194 |
+
|
| 195 |
+
if hasattr(module, "class_embedding"):
|
| 196 |
+
module.class_embedding.data.normal_(mean=0.0, std=std)
|
| 197 |
+
|
| 198 |
+
if isinstance(module, (nn.Linear, nn.Conv2d)):
|
| 199 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
| 200 |
+
if module.bias is not None:
|
| 201 |
+
module.bias.data.zero_()
|
| 202 |
+
elif isinstance(module, nn.Embedding):
|
| 203 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
| 204 |
+
if module.padding_idx is not None:
|
| 205 |
+
module.weight.data[module.padding_idx].zero_()
|
| 206 |
+
|
| 207 |
+
@property
|
| 208 |
+
def _supports_sdpa(self) -> bool:
|
| 209 |
+
"""Check LLM supports SDPA Attention"""
|
| 210 |
+
return self.language_model._supports_sdpa
|
| 211 |
+
|
| 212 |
+
|
| 213 |
+
class PrismaticForConditionalGeneration(PrismaticPreTrainedModel):
|
| 214 |
+
def __init__(self, config: PrismaticConfig) -> None:
|
| 215 |
+
super().__init__(config)
|
| 216 |
+
|
| 217 |
+
# [Validation] Lightweight Validate on `config` Fields + Dependency Versions
|
| 218 |
+
if config.use_fused_vision_backbone is None:
|
| 219 |
+
raise ValueError("Missing config field `use_fused_vision_backbone`")
|
| 220 |
+
|
| 221 |
+
if timm.__version__ not in {"0.9.10", "0.9.11", "0.9.12", "0.9.16"}:
|
| 222 |
+
raise NotImplementedError(
|
| 223 |
+
"TIMM Version must be >= 0.9.10 and < 1.0.0 (breaking); please raise a GitHub Issue "
|
| 224 |
+
"if you urgently need support for latest TIMM versions."
|
| 225 |
+
)
|
| 226 |
+
|
| 227 |
+
if (transformers.__version__ != "4.40.1") or (tokenizers.__version__ != "0.19.1"):
|
| 228 |
+
logger.warning(
|
| 229 |
+
f"Expected `transformers==4.40.1` and `tokenizers==0.19.1` but got "
|
| 230 |
+
f"`transformers=={transformers.__version__}` and `tokenizers=={tokenizers.__version__}`; "
|
| 231 |
+
f"there might be inference-time regressions due to dependency changes. If in doubt, please"
|
| 232 |
+
f"use the above versions."
|
| 233 |
+
)
|
| 234 |
+
|
| 235 |
+
# Instantiate PrismaticVisionBackbone (w/ Potential Fused Backbone)
|
| 236 |
+
self.vision_backbone = PrismaticVisionBackbone(
|
| 237 |
+
config.use_fused_vision_backbone, config.image_sizes, config.timm_model_ids, config.timm_override_act_layers
|
| 238 |
+
)
|
| 239 |
+
|
| 240 |
+
# Create Multimodal Projector
|
| 241 |
+
self.projector = PrismaticProjector(
|
| 242 |
+
config.use_fused_vision_backbone,
|
| 243 |
+
vision_dim=self.vision_backbone.embed_dim,
|
| 244 |
+
llm_dim=config.text_config.hidden_size,
|
| 245 |
+
)
|
| 246 |
+
|
| 247 |
+
# Instantiate LLM Backbone
|
| 248 |
+
self.language_model = AutoModelForCausalLM.from_config(
|
| 249 |
+
config.text_config, attn_implementation=config._attn_implementation
|
| 250 |
+
)
|
| 251 |
+
self.vocab_size = config.text_config.vocab_size
|
| 252 |
+
self.pad_token_id = config.pad_token_id
|
| 253 |
+
|
| 254 |
+
# HF Boilerplate =>> initializes weights via `_init_weights()` and sets gradient checkpointing
|
| 255 |
+
self.post_init()
|
| 256 |
+
|
| 257 |
+
# === `PreTrainedModel` Boilerplate ===
|
| 258 |
+
def get_input_embeddings(self) -> nn.Module:
|
| 259 |
+
return self.language_model.get_input_embeddings()
|
| 260 |
+
|
| 261 |
+
def set_input_embeddings(self, value: nn.Module) -> None:
|
| 262 |
+
self.language_model.set_input_embeddings(value)
|
| 263 |
+
|
| 264 |
+
def get_output_embeddings(self) -> nn.Module:
|
| 265 |
+
return self.language_model.get_output_embeddings()
|
| 266 |
+
|
| 267 |
+
def set_output_embeddings(self, new_embeddings: nn.Module) -> None:
|
| 268 |
+
self.language_model.set_output_embeddings(new_embeddings)
|
| 269 |
+
|
| 270 |
+
def get_decoder(self) -> nn.Module:
|
| 271 |
+
return self.language_model.get_decoder()
|
| 272 |
+
|
| 273 |
+
def set_decoder(self, decoder: nn.Module) -> None:
|
| 274 |
+
self.language_model.set_decoder(decoder)
|
| 275 |
+
|
| 276 |
+
def tie_weights(self) -> None:
|
| 277 |
+
self.language_model.tie_weights() # Note: `Llama-2` and `Mistral` don't tie weights (no-op)
|
| 278 |
+
|
| 279 |
+
def resize_token_embeddings(
|
| 280 |
+
self, new_num_tokens: Optional[int] = None, pad_to_multiple_of: Optional[int] = None
|
| 281 |
+
) -> nn.Embedding:
|
| 282 |
+
updated_embeddings = self.language_model.resize_token_embeddings(new_num_tokens, pad_to_multiple_of)
|
| 283 |
+
|
| 284 |
+
# Update config/instance variables
|
| 285 |
+
self.config.text_config.vocab_size = updated_embeddings.num_embeddings
|
| 286 |
+
self.vocab_size = updated_embeddings.num_embeddings
|
| 287 |
+
|
| 288 |
+
return updated_embeddings
|
| 289 |
+
|
| 290 |
+
# === Core Prismatic VLM `forward()` Logic ===
|
| 291 |
+
def forward(
|
| 292 |
+
self,
|
| 293 |
+
input_ids: Optional[torch.LongTensor] = None,
|
| 294 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 295 |
+
pixel_values: Optional[torch.FloatTensor] = None,
|
| 296 |
+
labels: Optional[torch.LongTensor] = None,
|
| 297 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
| 298 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
| 299 |
+
use_cache: Optional[bool] = None,
|
| 300 |
+
output_attentions: Optional[bool] = None,
|
| 301 |
+
output_hidden_states: Optional[bool] = None,
|
| 302 |
+
output_projector_features: Optional[bool] = None,
|
| 303 |
+
return_dict: Optional[bool] = None,
|
| 304 |
+
) -> Union[Tuple, PrismaticCausalLMOutputWithPast]:
|
| 305 |
+
"""Run a forward pass through the VLM, returning a PrismaticCausalLMOutputWithPast instance."""
|
| 306 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
| 307 |
+
output_hidden_states = (
|
| 308 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
| 309 |
+
)
|
| 310 |
+
output_projector_features = output_projector_features if output_projector_features is not None else False
|
| 311 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 312 |
+
|
| 313 |
+
# Respect `use_cache` only if not training (even if `gradient_checkpointing` is off)
|
| 314 |
+
use_cache = use_cache and not self.training
|
| 315 |
+
|
| 316 |
+
# Instantiate Placeholder for Projector Features
|
| 317 |
+
projected_patch_embeddings = None
|
| 318 |
+
|
| 319 |
+
# Note :: We only support forward passes with the following cases:
|
| 320 |
+
# => Cached Generation :: (input_ids.shape[1] == 1) and (past_key_values is not None)
|
| 321 |
+
# => Unimodal Forward :: (pixel_values is None)
|
| 322 |
+
# => Multimodal Forward :: (pixel_values is not None) and (input_ids/embeds.shape[0] == pixel_values.shape[0])
|
| 323 |
+
|
| 324 |
+
# === Handle Generation with Cache (`input_ids.shape[1] == 1`) =>> requires `past_keys_values` ===
|
| 325 |
+
if input_ids.shape[1] == 1:
|
| 326 |
+
assert input_ids.shape[0] == 1, "Generation is only currently supported for batch size of 1!"
|
| 327 |
+
assert past_key_values is not None, "You must provide `past_key_values` during cached generation!"
|
| 328 |
+
assert labels is None, "Unexpected key `labels` provided during cached generation!"
|
| 329 |
+
|
| 330 |
+
language_model_output = self.language_model(
|
| 331 |
+
input_ids=input_ids,
|
| 332 |
+
attention_mask=None,
|
| 333 |
+
position_ids=None,
|
| 334 |
+
past_key_values=past_key_values,
|
| 335 |
+
inputs_embeds=None,
|
| 336 |
+
labels=None,
|
| 337 |
+
use_cache=use_cache,
|
| 338 |
+
output_attentions=output_attentions,
|
| 339 |
+
output_hidden_states=output_hidden_states,
|
| 340 |
+
return_dict=return_dict,
|
| 341 |
+
)
|
| 342 |
+
|
| 343 |
+
# === Handle Unimodal Forward ===
|
| 344 |
+
elif pixel_values is None:
|
| 345 |
+
assert (input_ids is not None) and (inputs_embeds is None), "Missing `input_ids` in language-only forward!"
|
| 346 |
+
assert past_key_values is None, "Unexpected key `past_key_values` provided during language-only forward!"
|
| 347 |
+
|
| 348 |
+
language_model_output = self.language_model(
|
| 349 |
+
input_ids=input_ids,
|
| 350 |
+
attention_mask=attention_mask,
|
| 351 |
+
position_ids=None,
|
| 352 |
+
past_key_values=None,
|
| 353 |
+
inputs_embeds=None,
|
| 354 |
+
labels=labels,
|
| 355 |
+
use_cache=use_cache,
|
| 356 |
+
output_attentions=output_attentions,
|
| 357 |
+
output_hidden_states=output_hidden_states,
|
| 358 |
+
return_dict=return_dict,
|
| 359 |
+
)
|
| 360 |
+
|
| 361 |
+
# === Handle Multimodal Forward ===
|
| 362 |
+
elif (input_ids.shape[0] == pixel_values.shape[0]) or (inputs_embeds.shape[0] == pixel_values.shape[0]):
|
| 363 |
+
assert past_key_values is None, "Unexpected key `past_key_values` provided during language-only forward!"
|
| 364 |
+
|
| 365 |
+
# Visual Feature Extraction
|
| 366 |
+
patch_features = self.vision_backbone(pixel_values)
|
| 367 |
+
|
| 368 |
+
# Projection Logic =>> Update Attention Mask
|
| 369 |
+
projected_patch_embeddings = self.projector(patch_features)
|
| 370 |
+
projected_patch_attention_mask = None
|
| 371 |
+
if attention_mask is not None:
|
| 372 |
+
projected_patch_attention_mask = torch.full(
|
| 373 |
+
(projected_patch_embeddings.shape[0], projected_patch_embeddings.shape[1]),
|
| 374 |
+
fill_value=True,
|
| 375 |
+
dtype=attention_mask.dtype,
|
| 376 |
+
device=attention_mask.device,
|
| 377 |
+
)
|
| 378 |
+
|
| 379 |
+
# Get Input Embeddings (from Language Model Embeddings)
|
| 380 |
+
input_embeddings = self.get_input_embeddings()(input_ids)
|
| 381 |
+
|
| 382 |
+
# Build Multimodal Embeddings & Attention Mask =>> Prismatic defaults to inserting after <BOS> token (1:)
|
| 383 |
+
multimodal_embeddings = torch.cat(
|
| 384 |
+
[input_embeddings[:, :1, :], projected_patch_embeddings, input_embeddings[:, 1:, :]], dim=1
|
| 385 |
+
)
|
| 386 |
+
multimodal_attention_mask = None
|
| 387 |
+
if attention_mask is not None:
|
| 388 |
+
multimodal_attention_mask = torch.cat(
|
| 389 |
+
[attention_mask[:, :1], projected_patch_attention_mask, attention_mask[:, 1:]], dim=1
|
| 390 |
+
)
|
| 391 |
+
|
| 392 |
+
# Build Labels (if specified) =>> Ignore Labels for Patch Embeddings
|
| 393 |
+
multimodal_labels = None
|
| 394 |
+
if labels is not None:
|
| 395 |
+
projected_patch_labels = torch.full(
|
| 396 |
+
(projected_patch_embeddings.shape[0], projected_patch_embeddings.shape[1]),
|
| 397 |
+
fill_value=IGNORE_INDEX,
|
| 398 |
+
dtype=labels.dtype,
|
| 399 |
+
device=labels.device,
|
| 400 |
+
)
|
| 401 |
+
multimodal_labels = torch.cat([labels[:, :1], projected_patch_labels, labels[:, 1:]], dim=1)
|
| 402 |
+
|
| 403 |
+
# Dispatch to Language Model
|
| 404 |
+
language_model_output = self.language_model(
|
| 405 |
+
input_ids=None,
|
| 406 |
+
attention_mask=multimodal_attention_mask,
|
| 407 |
+
position_ids=None,
|
| 408 |
+
past_key_values=None,
|
| 409 |
+
inputs_embeds=multimodal_embeddings,
|
| 410 |
+
labels=multimodal_labels,
|
| 411 |
+
use_cache=use_cache,
|
| 412 |
+
output_attentions=output_attentions,
|
| 413 |
+
output_hidden_states=output_hidden_states,
|
| 414 |
+
return_dict=return_dict,
|
| 415 |
+
)
|
| 416 |
+
|
| 417 |
+
# === Otherwise =>> Assume Invalid! ===
|
| 418 |
+
elif (input_ids.shape[0] != pixel_values.shape[0]) or (inputs_embeds.shape[0] != pixel_values.shape[0]):
|
| 419 |
+
raise ValueError("Non-homogenous batch of (text, image) input -- forward() does not support mixed batches!")
|
| 420 |
+
|
| 421 |
+
else:
|
| 422 |
+
raise ValueError(
|
| 423 |
+
"Invalid PrismaticForConditionalGeneration `forward()` call with provided arguments:\n"
|
| 424 |
+
f"=> `input_ids` = {input_ids is not None}\n"
|
| 425 |
+
f"=> `attention_mask` = {attention_mask is not None}\n"
|
| 426 |
+
f"=> `pixel_values` = {pixel_values is not None}\n"
|
| 427 |
+
f"=> `labels` = {labels is not None}\n"
|
| 428 |
+
f"=> `input_embeds` = {inputs_embeds is not None}\n"
|
| 429 |
+
f"=> `past_key_values` = {past_key_values is not None}\n"
|
| 430 |
+
f"=> `use_cache` = {use_cache}"
|
| 431 |
+
)
|
| 432 |
+
|
| 433 |
+
# Unpack `language_model_output` and return PrismaticCausalLMOutputWithPast (or tuple if not `return_dict`)
|
| 434 |
+
if not return_dict:
|
| 435 |
+
if output_projector_features and (projected_patch_embeddings is not None):
|
| 436 |
+
return *language_model_output, projected_patch_embeddings
|
| 437 |
+
|
| 438 |
+
return language_model_output
|
| 439 |
+
|
| 440 |
+
return PrismaticCausalLMOutputWithPast(
|
| 441 |
+
loss=language_model_output.loss,
|
| 442 |
+
logits=language_model_output.logits,
|
| 443 |
+
past_key_values=language_model_output.past_key_values,
|
| 444 |
+
hidden_states=language_model_output.hidden_states,
|
| 445 |
+
attentions=language_model_output.attentions,
|
| 446 |
+
projector_features=projected_patch_embeddings,
|
| 447 |
+
)
|
| 448 |
+
|
| 449 |
+
# === GenerationMixin Methods ===
|
| 450 |
+
def prepare_inputs_for_generation(
|
| 451 |
+
self,
|
| 452 |
+
input_ids: Optional[torch.Tensor] = None,
|
| 453 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
| 454 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
| 455 |
+
pixel_values: Optional[torch.FloatTensor] = None,
|
| 456 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 457 |
+
**kwargs: str,
|
| 458 |
+
) -> Dict[str, torch.Tensor]:
|
| 459 |
+
"""Borrowed from `LlamaForCausalLM` and simplified for batch size = 1; mirrors original PrismaticVLM logic."""
|
| 460 |
+
if ((input_ids is not None) and (input_ids.shape[0] > 1)) or (
|
| 461 |
+
(inputs_embeds is not None) and (inputs_embeds.shape[0] > 1)
|
| 462 |
+
):
|
| 463 |
+
raise ValueError("Generation with batch size > 1 is not currently supported!")
|
| 464 |
+
|
| 465 |
+
# Handle `past_key_values` (cache) =>> assume `input_ids` just has unprocessed tokens
|
| 466 |
+
if past_key_values is not None:
|
| 467 |
+
input_ids = input_ids[:, -1:]
|
| 468 |
+
|
| 469 |
+
# If `input_embeds` are passed, we only want to use them in the 1st generation step
|
| 470 |
+
if inputs_embeds is not None and past_key_values is None:
|
| 471 |
+
model_inputs = {"input_embeds": inputs_embeds}
|
| 472 |
+
else:
|
| 473 |
+
model_inputs = {"input_ids": input_ids}
|
| 474 |
+
|
| 475 |
+
# Make sure `pixel_values` are preserved in `model_inputs`
|
| 476 |
+
model_inputs.update(
|
| 477 |
+
{
|
| 478 |
+
"attention_mask": attention_mask,
|
| 479 |
+
"pixel_values": pixel_values,
|
| 480 |
+
"past_key_values": past_key_values,
|
| 481 |
+
"use_cache": kwargs.get("use_cache"),
|
| 482 |
+
}
|
| 483 |
+
)
|
| 484 |
+
|
| 485 |
+
return model_inputs
|
| 486 |
+
|
| 487 |
+
# Defer to Language Model (all handle this differently, with different return types)
|
| 488 |
+
def _reorder_cache(self, *args, **kwargs) -> Any:
|
| 489 |
+
return self.language_model._reorder_cache(*args, **kwargs)
|
| 490 |
+
|
| 491 |
+
|
| 492 |
+
class OpenVLAForActionPrediction(PrismaticForConditionalGeneration):
|
| 493 |
+
config_class: PretrainedConfig = OpenVLAConfig
|
| 494 |
+
|
| 495 |
+
def __init__(self, config: OpenVLAConfig) -> None:
|
| 496 |
+
super().__init__(config)
|
| 497 |
+
self.norm_stats = config.norm_stats
|
| 498 |
+
|
| 499 |
+
# Compute action bins
|
| 500 |
+
self.bins = np.linspace(-1, 1, config.n_action_bins)
|
| 501 |
+
self.bin_centers = (self.bins[:-1] + self.bins[1:]) / 2.0
|
| 502 |
+
|
| 503 |
+
# Compute vocab size for de-tokenization -- revert added "multiple of"
|
| 504 |
+
self.vocab_size = self.config.text_config.vocab_size - self.config.pad_to_multiple_of
|
| 505 |
+
|
| 506 |
+
def predict_action(
|
| 507 |
+
self, input_ids: Optional[torch.LongTensor] = None, unnorm_key: Optional[str] = None, **kwargs: str
|
| 508 |
+
) -> np.ndarray:
|
| 509 |
+
"""Thin wrapper around .generate() that decodes predicted actions and unnormalizes them."""
|
| 510 |
+
# If the special empty token ('') does not already appear after the colon (':') token in the prompt
|
| 511 |
+
# (after "OUT:" or "ASSISTANT:"), insert it to match the inputs seen at training time
|
| 512 |
+
if not torch.all(input_ids[:, -1] == 29871):
|
| 513 |
+
input_ids = torch.cat(
|
| 514 |
+
(input_ids, torch.unsqueeze(torch.Tensor([29871]).long(), dim=0).to(input_ids.device)), dim=1
|
| 515 |
+
)
|
| 516 |
+
|
| 517 |
+
# Run VLA inference
|
| 518 |
+
generated_ids = self.generate(input_ids, max_new_tokens=self.get_action_dim(unnorm_key), **kwargs)
|
| 519 |
+
|
| 520 |
+
# Extract predicted action tokens and translate into (normalized) continuous actions
|
| 521 |
+
predicted_action_token_ids = generated_ids[0, -self.get_action_dim(unnorm_key) :].cpu().numpy()
|
| 522 |
+
discretized_actions = self.vocab_size - predicted_action_token_ids
|
| 523 |
+
discretized_actions = np.clip(discretized_actions - 1, a_min=0, a_max=self.bin_centers.shape[0] - 1)
|
| 524 |
+
normalized_actions = self.bin_centers[discretized_actions]
|
| 525 |
+
|
| 526 |
+
# Unnormalize actions
|
| 527 |
+
action_norm_stats = self.get_action_stats(unnorm_key)
|
| 528 |
+
mask = action_norm_stats.get("mask", np.ones_like(action_norm_stats["q01"], dtype=bool))
|
| 529 |
+
action_high, action_low = np.array(action_norm_stats["q99"]), np.array(action_norm_stats["q01"])
|
| 530 |
+
actions = np.where(
|
| 531 |
+
mask,
|
| 532 |
+
0.5 * (normalized_actions + 1) * (action_high - action_low) + action_low,
|
| 533 |
+
normalized_actions,
|
| 534 |
+
)
|
| 535 |
+
|
| 536 |
+
return actions
|
| 537 |
+
|
| 538 |
+
@staticmethod
|
| 539 |
+
def _check_unnorm_key(norm_stats: Dict[str, Dict[str, Any]], unnorm_key: Optional[str]) -> str:
|
| 540 |
+
if unnorm_key is None:
|
| 541 |
+
assert len(norm_stats) == 1, (
|
| 542 |
+
f"Your model was trained on more than one dataset, "
|
| 543 |
+
f"please pass a `unnorm_key` from the following options to choose the statistics "
|
| 544 |
+
f"used for un-normalizing actions: {norm_stats.keys()}"
|
| 545 |
+
)
|
| 546 |
+
unnorm_key = next(iter(norm_stats.keys()))
|
| 547 |
+
|
| 548 |
+
assert unnorm_key in norm_stats, (
|
| 549 |
+
f"The `unnorm_key` you chose is not in the set of available dataset statistics, "
|
| 550 |
+
f"please choose from: {norm_stats.keys()}"
|
| 551 |
+
)
|
| 552 |
+
return unnorm_key
|
| 553 |
+
|
| 554 |
+
def get_action_dim(self, unnorm_key: Optional[str] = None) -> int:
|
| 555 |
+
"""Get the dimensionality of the policy's action space."""
|
| 556 |
+
unnorm_key = self._check_unnorm_key(self.norm_stats, unnorm_key)
|
| 557 |
+
return len(self.norm_stats[unnorm_key]["action"]["q01"])
|
| 558 |
+
|
| 559 |
+
def get_action_stats(self, unnorm_key: Optional[str] = None) -> Dict[str, Any]:
|
| 560 |
+
"""Get all the logged statistics for the given dataset."""
|
| 561 |
+
unnorm_key = self._check_unnorm_key(self.norm_stats, unnorm_key)
|
| 562 |
+
return self.norm_stats[unnorm_key]["action"]
|