SentenceTransformer based on cross-encoder/nli-deberta-v3-large
This is a sentence-transformers model finetuned from cross-encoder/nli-deberta-v3-large. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: cross-encoder/nli-deberta-v3-large
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 1024 tokens
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: DebertaV2Model
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("richie-ghost/sbert_ft_cross-encoder-nli-deberta-v3-large")
# Run inference
sentences = [
'Three men riding a bicycle, tow of them are wearing a helmet.',
'There are at least two helmets.',
'Accountability measures help establish the financial condition of the government.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Information Retrieval
- Dataset:
eval - Evaluated with
InformationRetrievalEvaluator
| Metric | Value |
|---|---|
| cosine_accuracy@1 | 0.0003 |
| cosine_accuracy@3 | 0.2843 |
| cosine_accuracy@5 | 0.4288 |
| cosine_accuracy@10 | 0.5317 |
| cosine_precision@1 | 0.0003 |
| cosine_precision@3 | 0.0948 |
| cosine_precision@5 | 0.0858 |
| cosine_precision@10 | 0.0532 |
| cosine_recall@1 | 0.0003 |
| cosine_recall@3 | 0.2843 |
| cosine_recall@5 | 0.4288 |
| cosine_recall@10 | 0.5317 |
| cosine_ndcg@10 | 0.26 |
| cosine_mrr@10 | 0.1732 |
| cosine_map@100 | 0.185 |
| dot_accuracy@1 | 0.0037 |
| dot_accuracy@3 | 0.2625 |
| dot_accuracy@5 | 0.4018 |
| dot_accuracy@10 | 0.509 |
| dot_precision@1 | 0.0037 |
| dot_precision@3 | 0.0875 |
| dot_precision@5 | 0.0804 |
| dot_precision@10 | 0.0509 |
| dot_recall@1 | 0.0037 |
| dot_recall@3 | 0.2625 |
| dot_recall@5 | 0.4018 |
| dot_recall@10 | 0.509 |
| dot_ndcg@10 | 0.2476 |
| dot_mrr@10 | 0.1645 |
| dot_map@100 | 0.1768 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 40,338 training samples
- Columns:
sentence_0andsentence_1 - Approximate statistics based on the first 1000 samples:
sentence_0 sentence_1 type string string details - min: 5 tokens
- mean: 19.64 tokens
- max: 129 tokens
- min: 4 tokens
- mean: 11.27 tokens
- max: 36 tokens
- Samples:
sentence_0 sentence_1 A group of ladies trying to learn how to belly dance.Several women learn the art of exotic dancing.A man and a woman are having a conversation, while the man drinks a beer.The man is drinking.A brown dog drinks from a water bottle.A brown cat drinks from a bowl. - Loss:
MultipleNegativesRankingLosswith these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim" }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy: stepsper_device_train_batch_size: 16per_device_eval_batch_size: 16num_train_epochs: 4multi_dataset_batch_sampler: round_robin
All Hyperparameters
Click to expand
overwrite_output_dir: Falsedo_predict: Falseeval_strategy: stepsprediction_loss_only: Trueper_device_train_batch_size: 16per_device_eval_batch_size: 16per_gpu_train_batch_size: Noneper_gpu_eval_batch_size: Nonegradient_accumulation_steps: 1eval_accumulation_steps: Nonetorch_empty_cache_steps: Nonelearning_rate: 5e-05weight_decay: 0.0adam_beta1: 0.9adam_beta2: 0.999adam_epsilon: 1e-08max_grad_norm: 1num_train_epochs: 4max_steps: -1lr_scheduler_type: linearlr_scheduler_kwargs: {}warmup_ratio: 0.0warmup_steps: 0log_level: passivelog_level_replica: warninglog_on_each_node: Truelogging_nan_inf_filter: Truesave_safetensors: Truesave_on_each_node: Falsesave_only_model: Falserestore_callback_states_from_checkpoint: Falseno_cuda: Falseuse_cpu: Falseuse_mps_device: Falseseed: 42data_seed: Nonejit_mode_eval: Falseuse_ipex: Falsebf16: Falsefp16: Falsefp16_opt_level: O1half_precision_backend: autobf16_full_eval: Falsefp16_full_eval: Falsetf32: Nonelocal_rank: 0ddp_backend: Nonetpu_num_cores: Nonetpu_metrics_debug: Falsedebug: []dataloader_drop_last: Falsedataloader_num_workers: 0dataloader_prefetch_factor: Nonepast_index: -1disable_tqdm: Falseremove_unused_columns: Truelabel_names: Noneload_best_model_at_end: Falseignore_data_skip: Falsefsdp: []fsdp_min_num_params: 0fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap: Noneaccelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed: Nonelabel_smoothing_factor: 0.0optim: adamw_torchoptim_args: Noneadafactor: Falsegroup_by_length: Falselength_column_name: lengthddp_find_unused_parameters: Noneddp_bucket_cap_mb: Noneddp_broadcast_buffers: Falsedataloader_pin_memory: Truedataloader_persistent_workers: Falseskip_memory_metrics: Trueuse_legacy_prediction_loop: Falsepush_to_hub: Falseresume_from_checkpoint: Nonehub_model_id: Nonehub_strategy: every_savehub_private_repo: Falsehub_always_push: Falsegradient_checkpointing: Falsegradient_checkpointing_kwargs: Noneinclude_inputs_for_metrics: Falseeval_do_concat_batches: Truefp16_backend: autopush_to_hub_model_id: Nonepush_to_hub_organization: Nonemp_parameters:auto_find_batch_size: Falsefull_determinism: Falsetorchdynamo: Noneray_scope: lastddp_timeout: 1800torch_compile: Falsetorch_compile_backend: Nonetorch_compile_mode: Nonedispatch_batches: Nonesplit_batches: Noneinclude_tokens_per_second: Falseinclude_num_input_tokens_seen: Falseneftune_noise_alpha: Noneoptim_target_modules: Nonebatch_eval_metrics: Falseeval_on_start: Falseeval_use_gather_object: Falsebatch_sampler: batch_samplermulti_dataset_batch_sampler: round_robin
Training Logs
| Epoch | Step | Training Loss | eval_cosine_map@100 |
|---|---|---|---|
| 0.1983 | 500 | 1.2356 | 0.0873 |
| 0.3965 | 1000 | 0.4077 | 0.1200 |
| 0.5948 | 1500 | 0.3205 | 0.1280 |
| 0.7930 | 2000 | 0.2576 | 0.1416 |
| 0.9913 | 2500 | 0.2435 | 0.1476 |
| 1.0 | 2522 | - | 0.1492 |
| 1.1895 | 3000 | 0.1821 | 0.1553 |
| 1.3878 | 3500 | 0.1237 | 0.1589 |
| 1.5860 | 4000 | 0.1074 | 0.1603 |
| 1.7843 | 4500 | 0.0905 | 0.1654 |
| 1.9826 | 5000 | 0.0783 | 0.1685 |
| 2.0 | 5044 | - | 0.1683 |
| 2.1808 | 5500 | 0.0583 | 0.1698 |
| 2.3791 | 6000 | 0.0432 | 0.1746 |
| 2.5773 | 6500 | 0.0365 | 0.1749 |
| 2.7756 | 7000 | 0.0303 | 0.1791 |
| 2.9738 | 7500 | 0.0276 | 0.1788 |
| 3.0 | 7566 | - | 0.1805 |
| 3.1721 | 8000 | 0.02 | 0.1807 |
| 3.3703 | 8500 | 0.013 | 0.1823 |
| 3.5686 | 9000 | 0.0123 | 0.1839 |
| 3.7669 | 9500 | 0.0099 | 0.1852 |
| 3.9651 | 10000 | 0.01 | 0.1850 |
| 4.0 | 10088 | - | 0.1850 |
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.2.1
- Transformers: 4.44.2
- PyTorch: 2.5.0+cu121
- Accelerate: 1.0.1
- Datasets: 3.0.2
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 1
Model tree for richie-ghost/sbert_ft_cross-encoder-nli-deberta-v3-large
Base model
microsoft/deberta-v3-large
Quantized
cross-encoder/nli-deberta-v3-large
Evaluation results
- Cosine Accuracy@1 on evalself-reported0.000
- Cosine Accuracy@3 on evalself-reported0.284
- Cosine Accuracy@5 on evalself-reported0.429
- Cosine Accuracy@10 on evalself-reported0.532
- Cosine Precision@1 on evalself-reported0.000
- Cosine Precision@3 on evalself-reported0.095
- Cosine Precision@5 on evalself-reported0.086
- Cosine Precision@10 on evalself-reported0.053
- Cosine Recall@1 on evalself-reported0.000
- Cosine Recall@3 on evalself-reported0.284