|
--- |
|
language: |
|
- en |
|
license: apache-2.0 |
|
tags: |
|
- biencoder |
|
- sentence-transformers |
|
- text-classification |
|
- sentence-pair-classification |
|
- semantic-similarity |
|
- semantic-search |
|
- retrieval |
|
- reranking |
|
- generated_from_trainer |
|
- dataset_size:483820 |
|
- loss:MultipleNegativesSymmetricRankingLoss |
|
base_model: Alibaba-NLP/gte-modernbert-base |
|
widget: |
|
- source_sentence: 'See Precambrian time scale # Proposed Geologic timeline for another |
|
set of periods 4600 -- 541 MYA .' |
|
sentences: |
|
- In 2014 election , Biju Janata Dal candidate Tathagat Satapathy Bharatiya Janata |
|
party candidate Rudra Narayan Pany defeated with a margin of 1.37,340 votes . |
|
- In Scotland , the Strathclyde Partnership for Transport , formerly known as Strathclyde |
|
Passenger Transport Executive , comprises the former Strathclyde region , which |
|
includes the urban area around Glasgow . |
|
- 'See Precambrian Time Scale # Proposed Geological Timeline for another set of |
|
periods of 4600 -- 541 MYA .' |
|
- source_sentence: It is also 5 kilometers northeast of Tamaqua , 27 miles south of |
|
Allentown and 9 miles northwest of Hazleton . |
|
sentences: |
|
- In 1948 he moved to Massachusetts , and eventually settled in Vermont . |
|
- Suddenly I remembered that I was a New Zealander , I caught the first plane home |
|
and came back . |
|
- It is also 5 miles northeast of Tamaqua , 27 miles south of Allentown , and 9 |
|
miles northwest of Hazleton . |
|
- source_sentence: The party has a Member of Parliament , a member of the House of |
|
Lords , three members of the London Assembly and two Members of the European Parliament |
|
. |
|
sentences: |
|
- The party has one Member of Parliament , one member of the House of Lords , three |
|
Members of the London Assembly and two Members of the European Parliament . |
|
- Grapsid crabs dominate in Australia , Malaysia and Panama , while gastropods Cerithidea |
|
scalariformis and Melampus coeffeus are important seed predators in Florida mangroves |
|
. |
|
- Music Story is a music service website and international music data provider that |
|
curates , aggregates and analyses metadata for digital music services . |
|
- source_sentence: 'The play received two 1969 Tony Award nominations : Best Actress |
|
in a Play ( Michael Annals ) and Best Costume Design ( Charlotte Rae ) .' |
|
sentences: |
|
- Ravishanker is a fellow of the International Statistical Institute and an elected |
|
member of the American Statistical Association . |
|
- 'In 1969 , the play received two Tony - Award nominations : Best Actress in a |
|
Theatre Play ( Michael Annals ) and Best Costume Design ( Charlotte Rae ) .' |
|
- AMD and Nvidia both have proprietary methods of scaling , CrossFireX for AMD , |
|
and SLI for Nvidia . |
|
- source_sentence: He was a close friend of Ángel Cabrera and is a cousin of golfer |
|
Tony Croatto . |
|
sentences: |
|
- He was a close friend of Ángel Cabrera , and is a cousin of golfer Tony Croatto |
|
. |
|
- Eugenijus Bartulis ( born December 7 , 1949 in Kaunas ) is a Lithuanian Roman |
|
Catholic priest , and Bishop of Šiauliai . |
|
- UWIRE also distributes its members content to professional media outlets , including |
|
Yahoo , CNN and CBS News . |
|
datasets: |
|
- redis/langcache-sentencepairs-v1 |
|
pipeline_tag: sentence-similarity |
|
library_name: sentence-transformers |
|
metrics: |
|
- cosine_accuracy@1 |
|
- cosine_precision@1 |
|
- cosine_recall@1 |
|
- cosine_ndcg@10 |
|
- cosine_mrr@1 |
|
- cosine_map@100 |
|
model-index: |
|
- name: Redis fine-tuned BiEncoder model for semantic caching on LangCache |
|
results: |
|
- task: |
|
type: information-retrieval |
|
name: Information Retrieval |
|
dataset: |
|
name: train |
|
type: train |
|
metrics: |
|
- type: cosine_accuracy@1 |
|
value: 0.5978783286425633 |
|
name: Cosine Accuracy@1 |
|
- type: cosine_precision@1 |
|
value: 0.5978783286425633 |
|
name: Cosine Precision@1 |
|
- type: cosine_recall@1 |
|
value: 0.5765917883925028 |
|
name: Cosine Recall@1 |
|
- type: cosine_ndcg@10 |
|
value: 0.7905393533594786 |
|
name: Cosine Ndcg@10 |
|
- type: cosine_mrr@1 |
|
value: 0.5978783286425633 |
|
name: Cosine Mrr@1 |
|
- type: cosine_map@100 |
|
value: 0.7375956597574003 |
|
name: Cosine Map@100 |
|
--- |
|
|
|
# Redis fine-tuned BiEncoder model for semantic caching on LangCache |
|
|
|
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [Alibaba-NLP/gte-modernbert-base](https://huggingface.co/Alibaba-NLP/gte-modernbert-base) on the [LangCache Sentence Pairs (all)](https://huggingface.co/datasets/redis/langcache-sentencepairs-v1) dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for sentence pair similarity. |
|
|
|
## Model Details |
|
|
|
### Model Description |
|
- **Model Type:** Sentence Transformer |
|
- **Base model:** [Alibaba-NLP/gte-modernbert-base](https://huggingface.co/Alibaba-NLP/gte-modernbert-base) <!-- at revision e7f32e3c00f91d699e8c43b53106206bcc72bb22 --> |
|
- **Maximum Sequence Length:** 100 tokens |
|
- **Output Dimensionality:** 768 dimensions |
|
- **Similarity Function:** Cosine Similarity |
|
- **Training Dataset:** |
|
- [LangCache Sentence Pairs (all)](https://huggingface.co/datasets/redis/langcache-sentencepairs-v1) |
|
- **Language:** en |
|
- **License:** apache-2.0 |
|
|
|
### Model Sources |
|
|
|
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net) |
|
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) |
|
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) |
|
|
|
### Full Model Architecture |
|
|
|
``` |
|
SentenceTransformer( |
|
(0): Transformer({'max_seq_length': 100, 'do_lower_case': False, 'architecture': 'ModernBertModel'}) |
|
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) |
|
) |
|
``` |
|
|
|
## Usage |
|
|
|
### Direct Usage (Sentence Transformers) |
|
|
|
First install the Sentence Transformers library: |
|
|
|
```bash |
|
pip install -U sentence-transformers |
|
``` |
|
|
|
Then you can load this model and run inference. |
|
```python |
|
from sentence_transformers import SentenceTransformer |
|
|
|
# Download from the 🤗 Hub |
|
model = SentenceTransformer("redis/langcache-embed-v3") |
|
# Run inference |
|
sentences = [ |
|
'He was a close friend of Ángel Cabrera and is a cousin of golfer Tony Croatto .', |
|
'He was a close friend of Ángel Cabrera , and is a cousin of golfer Tony Croatto .', |
|
'UWIRE also distributes its members content to professional media outlets , including Yahoo , CNN and CBS News .', |
|
] |
|
embeddings = model.encode(sentences) |
|
print(embeddings.shape) |
|
# [3, 768] |
|
|
|
# Get the similarity scores for the embeddings |
|
similarities = model.similarity(embeddings, embeddings) |
|
print(similarities) |
|
# tensor([[1.0000, 0.9922, 0.0547], |
|
# [0.9922, 1.0000, 0.0449], |
|
# [0.0547, 0.0449, 1.0000]], dtype=torch.bfloat16) |
|
``` |
|
|
|
<!-- |
|
### Direct Usage (Transformers) |
|
|
|
<details><summary>Click to see the direct usage in Transformers</summary> |
|
|
|
</details> |
|
--> |
|
|
|
<!-- |
|
### Downstream Usage (Sentence Transformers) |
|
|
|
You can finetune this model on your own dataset. |
|
|
|
<details><summary>Click to expand</summary> |
|
|
|
</details> |
|
--> |
|
|
|
<!-- |
|
### Out-of-Scope Use |
|
|
|
*List how the model may foreseeably be misused and address what users ought not to do with the model.* |
|
--> |
|
|
|
## Evaluation |
|
|
|
### Metrics |
|
|
|
#### Information Retrieval |
|
|
|
* Dataset: `train` |
|
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) |
|
|
|
| Metric | Value | |
|
|:-------------------|:-----------| |
|
| cosine_accuracy@1 | 0.5979 | |
|
| cosine_precision@1 | 0.5979 | |
|
| cosine_recall@1 | 0.5766 | |
|
| **cosine_ndcg@10** | **0.7905** | |
|
| cosine_mrr@1 | 0.5979 | |
|
| cosine_map@100 | 0.7376 | |
|
|
|
<!-- |
|
## Bias, Risks and Limitations |
|
|
|
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* |
|
--> |
|
|
|
<!-- |
|
### Recommendations |
|
|
|
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* |
|
--> |
|
|
|
## Training Details |
|
|
|
### Training Dataset |
|
|
|
#### LangCache Sentence Pairs (all) |
|
|
|
* Dataset: [LangCache Sentence Pairs (all)](https://huggingface.co/datasets/redis/langcache-sentencepairs-v1) |
|
* Size: 26,850 training samples |
|
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>label</code> |
|
* Approximate statistics based on the first 1000 samples: |
|
| | sentence1 | sentence2 | label | |
|
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:-----------------------------| |
|
| type | string | string | int | |
|
| details | <ul><li>min: 8 tokens</li><li>mean: 27.35 tokens</li><li>max: 53 tokens</li></ul> | <ul><li>min: 8 tokens</li><li>mean: 27.27 tokens</li><li>max: 52 tokens</li></ul> | <ul><li>1: 100.00%</li></ul> | |
|
* Samples: |
|
| sentence1 | sentence2 | label | |
|
|:----------------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------|:---------------| |
|
| <code>The newer Punts are still very much in existence today and race in the same fleets as the older boats .</code> | <code>The newer punts are still very much in existence today and run in the same fleets as the older boats .</code> | <code>1</code> | |
|
| <code>After losing his second election , he resigned as opposition leader and was replaced by Geoff Pearsall .</code> | <code>Max Bingham resigned as opposition leader after losing his second election , and was replaced by Geoff Pearsall .</code> | <code>1</code> | |
|
| <code>The 12F was officially homologated on August 21 , 1929 and exhibited at the Paris Salon in 1930 .</code> | <code>The 12F was officially homologated on 21 August 1929 and displayed at the 1930 Paris Salon .</code> | <code>1</code> | |
|
* Loss: [<code>MultipleNegativesSymmetricRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativessymmetricrankingloss) with these parameters: |
|
```json |
|
{ |
|
"scale": 20.0, |
|
"similarity_fct": "cos_sim", |
|
"gather_across_devices": false |
|
} |
|
``` |
|
|
|
### Evaluation Dataset |
|
|
|
#### LangCache Sentence Pairs (all) |
|
|
|
* Dataset: [LangCache Sentence Pairs (all)](https://huggingface.co/datasets/redis/langcache-sentencepairs-v1) |
|
* Size: 26,850 evaluation samples |
|
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>label</code> |
|
* Approximate statistics based on the first 1000 samples: |
|
| | sentence1 | sentence2 | label | |
|
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:-----------------------------| |
|
| type | string | string | int | |
|
| details | <ul><li>min: 8 tokens</li><li>mean: 27.35 tokens</li><li>max: 53 tokens</li></ul> | <ul><li>min: 8 tokens</li><li>mean: 27.27 tokens</li><li>max: 52 tokens</li></ul> | <ul><li>1: 100.00%</li></ul> | |
|
* Samples: |
|
| sentence1 | sentence2 | label | |
|
|:----------------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------|:---------------| |
|
| <code>The newer Punts are still very much in existence today and race in the same fleets as the older boats .</code> | <code>The newer punts are still very much in existence today and run in the same fleets as the older boats .</code> | <code>1</code> | |
|
| <code>After losing his second election , he resigned as opposition leader and was replaced by Geoff Pearsall .</code> | <code>Max Bingham resigned as opposition leader after losing his second election , and was replaced by Geoff Pearsall .</code> | <code>1</code> | |
|
| <code>The 12F was officially homologated on August 21 , 1929 and exhibited at the Paris Salon in 1930 .</code> | <code>The 12F was officially homologated on 21 August 1929 and displayed at the 1930 Paris Salon .</code> | <code>1</code> | |
|
* Loss: [<code>MultipleNegativesSymmetricRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativessymmetricrankingloss) with these parameters: |
|
```json |
|
{ |
|
"scale": 20.0, |
|
"similarity_fct": "cos_sim", |
|
"gather_across_devices": false |
|
} |
|
``` |
|
|
|
### Training Hyperparameters |
|
#### Non-Default Hyperparameters |
|
|
|
- `eval_strategy`: steps |
|
- `per_device_train_batch_size`: 256 |
|
- `per_device_eval_batch_size`: 256 |
|
- `learning_rate`: 0.0003 |
|
- `adam_beta2`: 0.98 |
|
- `adam_epsilon`: 1e-06 |
|
- `max_steps`: 200000 |
|
- `warmup_steps`: 1000 |
|
- `load_best_model_at_end`: True |
|
- `optim`: adamw_torch |
|
- `ddp_find_unused_parameters`: False |
|
- `push_to_hub`: True |
|
- `hub_model_id`: redis/langcache-embed-v3 |
|
- `batch_sampler`: no_duplicates |
|
|
|
#### All Hyperparameters |
|
<details><summary>Click to expand</summary> |
|
|
|
- `overwrite_output_dir`: False |
|
- `do_predict`: False |
|
- `eval_strategy`: steps |
|
- `prediction_loss_only`: True |
|
- `per_device_train_batch_size`: 256 |
|
- `per_device_eval_batch_size`: 256 |
|
- `per_gpu_train_batch_size`: None |
|
- `per_gpu_eval_batch_size`: None |
|
- `gradient_accumulation_steps`: 1 |
|
- `eval_accumulation_steps`: None |
|
- `torch_empty_cache_steps`: None |
|
- `learning_rate`: 0.0003 |
|
- `weight_decay`: 0.0 |
|
- `adam_beta1`: 0.9 |
|
- `adam_beta2`: 0.98 |
|
- `adam_epsilon`: 1e-06 |
|
- `max_grad_norm`: 1.0 |
|
- `num_train_epochs`: 3.0 |
|
- `max_steps`: 200000 |
|
- `lr_scheduler_type`: linear |
|
- `lr_scheduler_kwargs`: {} |
|
- `warmup_ratio`: 0.0 |
|
- `warmup_steps`: 1000 |
|
- `log_level`: passive |
|
- `log_level_replica`: warning |
|
- `log_on_each_node`: True |
|
- `logging_nan_inf_filter`: True |
|
- `save_safetensors`: True |
|
- `save_on_each_node`: False |
|
- `save_only_model`: False |
|
- `restore_callback_states_from_checkpoint`: False |
|
- `no_cuda`: False |
|
- `use_cpu`: False |
|
- `use_mps_device`: False |
|
- `seed`: 42 |
|
- `data_seed`: None |
|
- `jit_mode_eval`: False |
|
- `use_ipex`: False |
|
- `bf16`: False |
|
- `fp16`: False |
|
- `fp16_opt_level`: O1 |
|
- `half_precision_backend`: auto |
|
- `bf16_full_eval`: False |
|
- `fp16_full_eval`: False |
|
- `tf32`: None |
|
- `local_rank`: 0 |
|
- `ddp_backend`: None |
|
- `tpu_num_cores`: None |
|
- `tpu_metrics_debug`: False |
|
- `debug`: [] |
|
- `dataloader_drop_last`: False |
|
- `dataloader_num_workers`: 0 |
|
- `dataloader_prefetch_factor`: None |
|
- `past_index`: -1 |
|
- `disable_tqdm`: False |
|
- `remove_unused_columns`: True |
|
- `label_names`: None |
|
- `load_best_model_at_end`: True |
|
- `ignore_data_skip`: False |
|
- `fsdp`: [] |
|
- `fsdp_min_num_params`: 0 |
|
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} |
|
- `fsdp_transformer_layer_cls_to_wrap`: None |
|
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} |
|
- `parallelism_config`: None |
|
- `deepspeed`: None |
|
- `label_smoothing_factor`: 0.0 |
|
- `optim`: adamw_torch |
|
- `optim_args`: None |
|
- `adafactor`: False |
|
- `group_by_length`: False |
|
- `length_column_name`: length |
|
- `ddp_find_unused_parameters`: False |
|
- `ddp_bucket_cap_mb`: None |
|
- `ddp_broadcast_buffers`: False |
|
- `dataloader_pin_memory`: True |
|
- `dataloader_persistent_workers`: False |
|
- `skip_memory_metrics`: True |
|
- `use_legacy_prediction_loop`: False |
|
- `push_to_hub`: True |
|
- `resume_from_checkpoint`: None |
|
- `hub_model_id`: redis/langcache-embed-v3 |
|
- `hub_strategy`: every_save |
|
- `hub_private_repo`: None |
|
- `hub_always_push`: False |
|
- `hub_revision`: None |
|
- `gradient_checkpointing`: False |
|
- `gradient_checkpointing_kwargs`: None |
|
- `include_inputs_for_metrics`: False |
|
- `include_for_metrics`: [] |
|
- `eval_do_concat_batches`: True |
|
- `fp16_backend`: auto |
|
- `push_to_hub_model_id`: None |
|
- `push_to_hub_organization`: None |
|
- `mp_parameters`: |
|
- `auto_find_batch_size`: False |
|
- `full_determinism`: False |
|
- `torchdynamo`: None |
|
- `ray_scope`: last |
|
- `ddp_timeout`: 1800 |
|
- `torch_compile`: False |
|
- `torch_compile_backend`: None |
|
- `torch_compile_mode`: None |
|
- `include_tokens_per_second`: False |
|
- `include_num_input_tokens_seen`: False |
|
- `neftune_noise_alpha`: None |
|
- `optim_target_modules`: None |
|
- `batch_eval_metrics`: False |
|
- `eval_on_start`: False |
|
- `use_liger_kernel`: False |
|
- `liger_kernel_config`: None |
|
- `eval_use_gather_object`: False |
|
- `average_tokens_across_devices`: False |
|
- `prompts`: None |
|
- `batch_sampler`: no_duplicates |
|
- `multi_dataset_batch_sampler`: proportional |
|
- `router_mapping`: {} |
|
- `learning_rate_mapping`: {} |
|
|
|
</details> |
|
|
|
### Training Logs |
|
<details><summary>Click to expand</summary> |
|
|
|
| Epoch | Step | Training Loss | Validation Loss | train_cosine_ndcg@10 | |
|
|:-----------:|:---------:|:-------------:|:---------------:|:--------------------:| |
|
| -1 | -1 | - | - | 0.7522 | |
|
| 0.5291 | 1000 | 0.0231 | 0.1710 | 0.7518 | |
|
| 1.0582 | 2000 | 0.0147 | 0.1552 | 0.7593 | |
|
| 1.5873 | 3000 | 0.0126 | 0.1616 | 0.7603 | |
|
| 2.1164 | 4000 | 0.0113 | 0.1301 | 0.7644 | |
|
| 2.6455 | 5000 | 0.0119 | 0.1276 | 0.7659 | |
|
| 3.1746 | 6000 | 0.0099 | 0.1270 | 0.7648 | |
|
| 3.7037 | 7000 | 0.0101 | 0.1239 | 0.7676 | |
|
| 4.2328 | 8000 | 0.0093 | 0.1267 | 0.7709 | |
|
| 4.7619 | 9000 | 0.0092 | 0.1190 | 0.7711 | |
|
| 5.2910 | 10000 | 0.0088 | 0.1145 | 0.7735 | |
|
| 5.8201 | 11000 | 0.009 | 0.1172 | 0.7735 | |
|
| 6.3492 | 12000 | 0.0083 | 0.1144 | 0.7749 | |
|
| 6.8783 | 13000 | 0.0088 | 0.1140 | 0.7736 | |
|
| 7.4074 | 14000 | 0.0083 | 0.1134 | 0.7751 | |
|
| 7.9365 | 15000 | 0.0087 | 0.1108 | 0.7742 | |
|
| 8.4656 | 16000 | 0.0084 | 0.1119 | 0.7759 | |
|
| 8.9947 | 17000 | 0.0081 | 0.1125 | 0.7762 | |
|
| 9.5238 | 18000 | 0.0081 | 0.1134 | 0.7768 | |
|
| 10.0529 | 19000 | 0.008 | 0.1126 | 0.7766 | |
|
| 10.5820 | 20000 | 0.0079 | 0.1119 | 0.7755 | |
|
| 11.1111 | 21000 | 0.0078 | 0.1112 | 0.7781 | |
|
| 11.6402 | 22000 | 0.008 | 0.1113 | 0.7778 | |
|
| 12.1693 | 23000 | 0.0082 | 0.1066 | 0.7796 | |
|
| 12.6984 | 24000 | 0.0078 | 0.1098 | 0.7775 | |
|
| 13.2275 | 25000 | 0.0078 | 0.1089 | 0.7800 | |
|
| 13.7566 | 26000 | 0.0074 | 0.1091 | 0.7779 | |
|
| 14.2857 | 27000 | 0.0078 | 0.1061 | 0.7782 | |
|
| 14.8148 | 28000 | 0.0074 | 0.1073 | 0.7769 | |
|
| 15.3439 | 29000 | 0.0078 | 0.1022 | 0.7804 | |
|
| 15.8730 | 30000 | 0.0078 | 0.1035 | 0.7799 | |
|
| 16.4021 | 31000 | 0.0074 | 0.1046 | 0.7793 | |
|
| 16.9312 | 32000 | 0.0074 | 0.1043 | 0.7817 | |
|
| 17.4603 | 33000 | 0.0071 | 0.1056 | 0.7831 | |
|
| 17.9894 | 34000 | 0.0074 | 0.1022 | 0.7820 | |
|
| 18.5185 | 35000 | 0.0073 | 0.1035 | 0.7820 | |
|
| 19.0476 | 36000 | 0.0074 | 0.1020 | 0.7836 | |
|
| 19.5767 | 37000 | 0.0071 | 0.1036 | 0.7828 | |
|
| 20.1058 | 38000 | 0.007 | 0.1029 | 0.7845 | |
|
| 20.6349 | 39000 | 0.0071 | 0.1019 | 0.7835 | |
|
| 21.1640 | 40000 | 0.007 | 0.0991 | 0.7849 | |
|
| 21.6931 | 41000 | 0.0071 | 0.1013 | 0.7828 | |
|
| 22.2222 | 42000 | 0.0073 | 0.1033 | 0.7833 | |
|
| 22.7513 | 43000 | 0.0068 | 0.0996 | 0.7835 | |
|
| 23.2804 | 44000 | 0.007 | 0.0976 | 0.7850 | |
|
| 23.8095 | 45000 | 0.0069 | 0.0986 | 0.7840 | |
|
| 24.3386 | 46000 | 0.0068 | 0.0992 | 0.7856 | |
|
| 24.8677 | 47000 | 0.0068 | 0.0988 | 0.7838 | |
|
| 25.3968 | 48000 | 0.0068 | 0.0980 | 0.7857 | |
|
| 25.9259 | 49000 | 0.007 | 0.0976 | 0.7860 | |
|
| 26.4550 | 50000 | 0.0071 | 0.0994 | 0.7850 | |
|
| 26.9841 | 51000 | 0.0067 | 0.0984 | 0.7862 | |
|
| 27.5132 | 52000 | 0.0064 | 0.0992 | 0.7845 | |
|
| 28.0423 | 53000 | 0.0068 | 0.1021 | 0.7840 | |
|
| 28.5714 | 54000 | 0.0066 | 0.0974 | 0.7863 | |
|
| 29.1005 | 55000 | 0.0066 | 0.1001 | 0.7848 | |
|
| 29.6296 | 56000 | 0.0067 | 0.0997 | 0.7848 | |
|
| 30.1587 | 57000 | 0.0067 | 0.0965 | 0.7868 | |
|
| 30.6878 | 58000 | 0.0067 | 0.0968 | 0.7858 | |
|
| 31.2169 | 59000 | 0.0066 | 0.0973 | 0.7861 | |
|
| 31.7460 | 60000 | 0.0067 | 0.0972 | 0.7865 | |
|
| 32.2751 | 61000 | 0.0065 | 0.0991 | 0.7855 | |
|
| 32.8042 | 62000 | 0.0062 | 0.0960 | 0.7871 | |
|
| 33.3333 | 63000 | 0.0068 | 0.1006 | 0.7863 | |
|
| 33.8624 | 64000 | 0.0063 | 0.0980 | 0.7872 | |
|
| 34.3915 | 65000 | 0.0066 | 0.0957 | 0.7871 | |
|
| 34.9206 | 66000 | 0.0066 | 0.0971 | 0.7870 | |
|
| 35.4497 | 67000 | 0.0063 | 0.0982 | 0.7857 | |
|
| 35.9788 | 68000 | 0.0067 | 0.0944 | 0.7871 | |
|
| 36.5079 | 69000 | 0.0062 | 0.0961 | 0.7870 | |
|
| 37.0370 | 70000 | 0.0061 | 0.0924 | 0.7880 | |
|
| 37.5661 | 71000 | 0.0064 | 0.0928 | 0.7878 | |
|
| 38.0952 | 72000 | 0.0065 | 0.0934 | 0.7888 | |
|
| 38.6243 | 73000 | 0.0069 | 0.0948 | 0.7873 | |
|
| **39.1534** | **74000** | **0.0064** | **0.0922** | **0.7885** | |
|
| 39.6825 | 75000 | 0.0064 | 0.0937 | 0.7888 | |
|
| 40.2116 | 76000 | 0.0059 | 0.0941 | 0.7882 | |
|
| 40.7407 | 77000 | 0.0067 | 0.0934 | 0.7900 | |
|
| 41.2698 | 78000 | 0.0064 | 0.0926 | 0.7888 | |
|
| 41.7989 | 79000 | 0.006 | 0.0948 | 0.7880 | |
|
| 42.3280 | 80000 | 0.006 | 0.0953 | 0.7876 | |
|
| 42.8571 | 81000 | 0.0058 | 0.0955 | 0.7887 | |
|
| 43.3862 | 82000 | 0.0065 | 0.0945 | 0.7875 | |
|
| 43.9153 | 83000 | 0.0063 | 0.0928 | 0.7888 | |
|
| 44.4444 | 84000 | 0.0065 | 0.0959 | 0.7883 | |
|
| 44.9735 | 85000 | 0.0063 | 0.0956 | 0.7876 | |
|
| 45.5026 | 86000 | 0.006 | 0.0946 | 0.7893 | |
|
| 46.0317 | 87000 | 0.0062 | 0.0954 | 0.7908 | |
|
| 46.5608 | 88000 | 0.0061 | 0.0960 | 0.7896 | |
|
| 47.0899 | 89000 | 0.006 | 0.0953 | 0.7893 | |
|
| 47.6190 | 90000 | 0.0058 | 0.0941 | 0.7899 | |
|
| 48.1481 | 91000 | 0.0059 | 0.0950 | 0.7892 | |
|
| 48.6772 | 92000 | 0.0066 | 0.0948 | 0.7890 | |
|
| 49.2063 | 93000 | 0.0058 | 0.0947 | 0.7886 | |
|
| 49.7354 | 94000 | 0.006 | 0.0952 | 0.7891 | |
|
| 50.2646 | 95000 | 0.0058 | 0.0948 | 0.7885 | |
|
| 50.7937 | 96000 | 0.0058 | 0.0945 | 0.7894 | |
|
| 51.3228 | 97000 | 0.0059 | 0.0936 | 0.7901 | |
|
| 51.8519 | 98000 | 0.0059 | 0.0950 | 0.7900 | |
|
| 52.3810 | 99000 | 0.0058 | 0.0954 | 0.7893 | |
|
| 52.9101 | 100000 | 0.0058 | 0.0946 | 0.7900 | |
|
| 53.4392 | 101000 | 0.0056 | 0.0943 | 0.7900 | |
|
| 53.9683 | 102000 | 0.006 | 0.0950 | 0.7895 | |
|
| 54.4974 | 103000 | 0.0059 | 0.0937 | 0.7899 | |
|
| 55.0265 | 104000 | 0.0061 | 0.0941 | 0.7897 | |
|
| 55.5556 | 105000 | 0.0059 | 0.0941 | 0.7903 | |
|
| 56.0847 | 106000 | 0.0057 | 0.0924 | 0.7904 | |
|
| 56.6138 | 107000 | 0.006 | 0.0933 | 0.7901 | |
|
| 57.1429 | 108000 | 0.0059 | 0.0948 | 0.7888 | |
|
| 57.6720 | 109000 | 0.0061 | 0.0938 | 0.7899 | |
|
| 58.2011 | 110000 | 0.0058 | 0.0942 | 0.7904 | |
|
| 58.7302 | 111000 | 0.0056 | 0.0943 | 0.7913 | |
|
| 59.2593 | 112000 | 0.0056 | 0.0949 | 0.7915 | |
|
| 59.7884 | 113000 | 0.0058 | 0.0947 | 0.7907 | |
|
| 60.3175 | 114000 | 0.0058 | 0.0939 | 0.7910 | |
|
| 60.8466 | 115000 | 0.0058 | 0.0942 | 0.7906 | |
|
| 61.3757 | 116000 | 0.0055 | 0.0933 | 0.7910 | |
|
| 61.9048 | 117000 | 0.0055 | 0.0936 | 0.7913 | |
|
| 62.4339 | 118000 | 0.0059 | 0.0937 | 0.7904 | |
|
| 62.9630 | 119000 | 0.0057 | 0.0943 | 0.7908 | |
|
| 63.4921 | 120000 | 0.0056 | 0.0934 | 0.7912 | |
|
| 64.0212 | 121000 | 0.0058 | 0.0936 | 0.7909 | |
|
| 64.5503 | 122000 | 0.0055 | 0.0942 | 0.7896 | |
|
| 65.0794 | 123000 | 0.0058 | 0.0939 | 0.7901 | |
|
| 65.6085 | 124000 | 0.0057 | 0.0936 | 0.7907 | |
|
| 66.1376 | 125000 | 0.0054 | 0.0951 | 0.7901 | |
|
| 66.6667 | 126000 | 0.0055 | 0.0942 | 0.7912 | |
|
| 67.1958 | 127000 | 0.0057 | 0.0943 | 0.7914 | |
|
| 67.7249 | 128000 | 0.0057 | 0.0937 | 0.7910 | |
|
| 68.2540 | 129000 | 0.0057 | 0.0933 | 0.7918 | |
|
| 68.7831 | 130000 | 0.0055 | 0.0935 | 0.7913 | |
|
| 69.3122 | 131000 | 0.0053 | 0.0935 | 0.7908 | |
|
| 69.8413 | 132000 | 0.0057 | 0.0937 | 0.7905 | |
|
| 70.3704 | 133000 | 0.0055 | 0.0940 | 0.7912 | |
|
| 70.8995 | 134000 | 0.0052 | 0.0937 | 0.7913 | |
|
| 71.4286 | 135000 | 0.005 | 0.0940 | 0.7917 | |
|
| 71.9577 | 136000 | 0.0053 | 0.0933 | 0.7914 | |
|
| 72.4868 | 137000 | 0.0056 | 0.0940 | 0.7915 | |
|
| 73.0159 | 138000 | 0.0054 | 0.0937 | 0.7909 | |
|
| 73.5450 | 139000 | 0.0051 | 0.0940 | 0.7909 | |
|
| 74.0741 | 140000 | 0.0058 | 0.0938 | 0.7911 | |
|
| 74.6032 | 141000 | 0.0056 | 0.0938 | 0.7912 | |
|
| 75.1323 | 142000 | 0.0052 | 0.0931 | 0.7908 | |
|
| 75.6614 | 143000 | 0.0052 | 0.0937 | 0.7905 | |
|
| 76.1905 | 144000 | 0.0054 | 0.0940 | 0.7905 | |
|
| 76.7196 | 145000 | 0.0055 | 0.0940 | 0.7907 | |
|
| 77.2487 | 146000 | 0.0053 | 0.0941 | 0.7909 | |
|
| 77.7778 | 147000 | 0.0057 | 0.0944 | 0.7907 | |
|
| 78.3069 | 148000 | 0.0054 | 0.0947 | 0.7909 | |
|
| 78.8360 | 149000 | 0.0054 | 0.0949 | 0.7907 | |
|
| 79.3651 | 150000 | 0.0055 | 0.0948 | 0.7907 | |
|
| 79.8942 | 151000 | 0.0058 | 0.0950 | 0.7907 | |
|
| 80.4233 | 152000 | 0.0054 | 0.0946 | 0.7907 | |
|
| 80.9524 | 153000 | 0.0053 | 0.0949 | 0.7909 | |
|
| 81.4815 | 154000 | 0.0055 | 0.0947 | 0.7908 | |
|
| 82.0106 | 155000 | 0.0053 | 0.0946 | 0.7906 | |
|
| 82.5397 | 156000 | 0.0053 | 0.0949 | 0.7906 | |
|
| 83.0688 | 157000 | 0.0051 | 0.0948 | 0.7912 | |
|
| 83.5979 | 158000 | 0.0052 | 0.0954 | 0.7906 | |
|
| 84.1270 | 159000 | 0.0054 | 0.0953 | 0.7908 | |
|
| 84.6561 | 160000 | 0.005 | 0.0951 | 0.7911 | |
|
| 85.1852 | 161000 | 0.0054 | 0.0953 | 0.7910 | |
|
| 85.7143 | 162000 | 0.0056 | 0.0957 | 0.7907 | |
|
| 86.2434 | 163000 | 0.0054 | 0.0953 | 0.7909 | |
|
| 86.7725 | 164000 | 0.0051 | 0.0955 | 0.7912 | |
|
| 87.3016 | 165000 | 0.0055 | 0.0956 | 0.7911 | |
|
| 87.8307 | 166000 | 0.0056 | 0.0954 | 0.7909 | |
|
| 88.3598 | 167000 | 0.0052 | 0.0955 | 0.7911 | |
|
| 88.8889 | 168000 | 0.0052 | 0.0953 | 0.7910 | |
|
| 89.4180 | 169000 | 0.0052 | 0.0952 | 0.7906 | |
|
| 89.9471 | 170000 | 0.0053 | 0.0952 | 0.7908 | |
|
| 90.4762 | 171000 | 0.0052 | 0.0954 | 0.7908 | |
|
| 91.0053 | 172000 | 0.0054 | 0.0954 | 0.7907 | |
|
| 91.5344 | 173000 | 0.0052 | 0.0951 | 0.7909 | |
|
| 92.0635 | 174000 | 0.0053 | 0.0951 | 0.7907 | |
|
| 92.5926 | 175000 | 0.0051 | 0.0950 | 0.7906 | |
|
| 93.1217 | 176000 | 0.0054 | 0.0953 | 0.7907 | |
|
| 93.6508 | 177000 | 0.0052 | 0.0953 | 0.7907 | |
|
| 94.1799 | 178000 | 0.0051 | 0.0951 | 0.7908 | |
|
| 94.7090 | 179000 | 0.0052 | 0.0952 | 0.7906 | |
|
| 95.2381 | 180000 | 0.0053 | 0.0953 | 0.7909 | |
|
| 95.7672 | 181000 | 0.0052 | 0.0953 | 0.7908 | |
|
| 96.2963 | 182000 | 0.0051 | 0.0952 | 0.7906 | |
|
| 96.8254 | 183000 | 0.0053 | 0.0953 | 0.7907 | |
|
| 97.3545 | 184000 | 0.0051 | 0.0953 | 0.7907 | |
|
| 97.8836 | 185000 | 0.0049 | 0.0953 | 0.7906 | |
|
| 98.4127 | 186000 | 0.0051 | 0.0953 | 0.7907 | |
|
| 98.9418 | 187000 | 0.0051 | 0.0954 | 0.7906 | |
|
| 99.4709 | 188000 | 0.0053 | 0.0954 | 0.7906 | |
|
| 100.0 | 189000 | 0.0051 | 0.0954 | 0.7904 | |
|
| 100.5291 | 190000 | 0.0054 | 0.0953 | 0.7907 | |
|
| 101.0582 | 191000 | 0.0052 | 0.0954 | 0.7905 | |
|
| 101.5873 | 192000 | 0.0051 | 0.0954 | 0.7907 | |
|
| 102.1164 | 193000 | 0.0052 | 0.0953 | 0.7907 | |
|
| 102.6455 | 194000 | 0.0051 | 0.0955 | 0.7908 | |
|
| 103.1746 | 195000 | 0.0054 | 0.0954 | 0.7906 | |
|
| 103.7037 | 196000 | 0.0052 | 0.0954 | 0.7905 | |
|
| 104.2328 | 197000 | 0.0053 | 0.0954 | 0.7906 | |
|
| 104.7619 | 198000 | 0.0052 | 0.0954 | 0.7907 | |
|
| 105.2910 | 199000 | 0.0055 | 0.0954 | 0.7904 | |
|
| 105.8201 | 200000 | 0.0054 | 0.0955 | 0.7905 | |
|
|
|
* The bold row denotes the saved checkpoint. |
|
</details> |
|
|
|
### Framework Versions |
|
- Python: 3.12.3 |
|
- Sentence Transformers: 5.1.0 |
|
- Transformers: 4.56.0 |
|
- PyTorch: 2.8.0+cu128 |
|
- Accelerate: 1.10.1 |
|
- Datasets: 4.0.0 |
|
- Tokenizers: 0.22.0 |
|
|
|
## Citation |
|
|
|
### BibTeX |
|
|
|
#### Sentence Transformers |
|
```bibtex |
|
@inproceedings{reimers-2019-sentence-bert, |
|
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", |
|
author = "Reimers, Nils and Gurevych, Iryna", |
|
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", |
|
month = "11", |
|
year = "2019", |
|
publisher = "Association for Computational Linguistics", |
|
url = "https://arxiv.org/abs/1908.10084", |
|
} |
|
``` |
|
|
|
<!-- |
|
## Glossary |
|
|
|
*Clearly define terms in order to be accessible across audiences.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Authors |
|
|
|
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Contact |
|
|
|
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* |
|
--> |