File size: 16,694 Bytes
1433a8a
 
 
 
 
 
 
 
 
 
 
 
 
 
9e81c40
 
 
a7ab361
0a66664
 
a7ab361
0a66664
 
 
 
 
 
 
 
a7ab361
0a66664
 
 
 
 
 
 
 
a7ab361
0a66664
 
 
 
 
a7ab361
0a66664
 
 
 
 
 
 
 
a7ab361
0a66664
 
 
 
 
1433a8a
f6063b5
1433a8a
 
 
c29f390
 
 
 
 
 
1433a8a
 
 
 
c29f390
 
1433a8a
f6063b5
 
1433a8a
c29f390
9e81c40
c29f390
 
9e81c40
c29f390
 
9e81c40
c29f390
 
9e81c40
c29f390
 
9e81c40
c29f390
 
9e81c40
c29f390
1433a8a
 
 
 
9e81c40
1433a8a
 
 
 
 
9e81c40
c29f390
1433a8a
 
 
f6063b5
1433a8a
 
 
 
 
 
 
 
 
 
 
 
 
c29f390
9e81c40
1433a8a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0a66664
 
 
1433a8a
 
 
 
 
 
 
 
9e81c40
 
 
1433a8a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c29f390
1433a8a
f6063b5
c29f390
1433a8a
cfc7a2d
 
9e81c40
 
 
 
 
 
1433a8a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f6063b5
0a66664
5742358
9abcaed
5742358
 
 
0a66664
1433a8a
0a66664
 
 
 
 
9e81c40
 
 
 
 
 
 
 
1433a8a
 
 
 
 
f6063b5
0a66664
5742358
9abcaed
5742358
 
 
0a66664
1433a8a
0a66664
 
 
 
 
9e81c40
 
 
 
 
 
 
 
1433a8a
 
f6063b5
 
9e81c40
1433a8a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
---
language:
- en
license: apache-2.0
tags:
- biencoder
- sentence-transformers
- text-classification
- sentence-pair-classification
- semantic-similarity
- semantic-search
- retrieval
- reranking
- generated_from_trainer
- dataset_size:9233417
- loss:ArcFaceInBatchLoss
base_model: answerdotai/ModernBERT-base
widget:
- source_sentence: Hayley Vaughan portrayed Ripa on the ABC daytime soap opera , ``
    All My Children `` , between 1990 and 2002 .
  sentences:
  - Traxxpad is a music application for Sony 's PlayStation Portable published by
    Definitive Studios and developed by Eidos Interactive .
  - Between 1990 and 2002 , Hayley Vaughan Ripa portrayed in the ABC soap opera ``
    All My Children `` .
  - Between 1990 and 2002 , Ripa Hayley portrayed Vaughan in the ABC soap opera ``
    All My Children `` .
- source_sentence: Olivella monilifera is a species of dwarf sea snail , small gastropod
    mollusk in the family Olivellidae , the marine olives .
  sentences:
  - Olivella monilifera is a species of the dwarf - sea snail , small gastropod mollusk
    in the Olivellidae family , the marine olives .
  - He was cut by the Browns after being signed by the Bills in 2013 . He was later
    released .
  - Olivella monilifera is a kind of sea snail , marine gastropod mollusk in the Olivellidae
    family , the dwarf olives .
- source_sentence: Hayashi said that Mackey `` is a sort of `` of the original model
    for Tenchi .
  sentences:
  - In the summer of 2009 , Ellick shot a documentary about Malala Yousafzai .
  - Hayashi said that Mackey is `` sort of `` the original model for Tenchi .
  - Mackey said that Hayashi is `` sort of `` the original model for Tenchi .
- source_sentence: Much of the film was shot on location in Los Angeles and in nearby
    Burbank and Glendale .
  sentences:
  - Much of the film was shot on location in Los Angeles and in nearby Burbank and
    Glendale .
  - Much of the film was shot on site in Burbank and Glendale and in the nearby Los
    Angeles .
  - Traxxpad is a music application for the Sony PlayStation Portable developed by
    the Definitive Studios and published by Eidos Interactive .
- source_sentence: According to him , the earth is the carrier of his artistic work
    , which is only integrated into the creative process by minimal changes .
  sentences:
  - National players are Bold players .
  - According to him , earth is the carrier of his artistic work being integrated
    into the creative process only by minimal changes .
  - According to him , earth is the carrier of his creative work being integrated
    into the artistic process only by minimal changes .
datasets:
- redis/langcache-sentencepairs-v2
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- cosine_accuracy@1
- cosine_precision@1
- cosine_recall@1
- cosine_ndcg@10
- cosine_mrr@1
- cosine_map@100
model-index:
- name: Redis fine-tuned BiEncoder model for semantic caching on LangCache
  results:
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: test
      type: test
    metrics:
    - type: cosine_accuracy@1
      value: 0.4126938643934238
      name: Cosine Accuracy@1
    - type: cosine_precision@1
      value: 0.4126938643934238
      name: Cosine Precision@1
    - type: cosine_recall@1
      value: 0.39900881466078997
      name: Cosine Recall@1
    - type: cosine_ndcg@10
      value: 0.5950456720106155
      name: Cosine Ndcg@10
    - type: cosine_mrr@1
      value: 0.4126938643934238
      name: Cosine Mrr@1
    - type: cosine_map@100
      value: 0.543168962594735
      name: Cosine Map@100
---

# Redis fine-tuned BiEncoder model for semantic caching on LangCache

This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [answerdotai/ModernBERT-base](https://huggingface.co/answerdotai/ModernBERT-base) on the [LangCache Sentence Pairs (all)](https://huggingface.co/datasets/redis/langcache-sentencepairs-v2) dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for sentence pair similarity.

## Model Details

### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [answerdotai/ModernBERT-base](https://huggingface.co/answerdotai/ModernBERT-base) <!-- at revision 8949b909ec900327062f0ebf497f51aef5e6f0c8 -->
- **Maximum Sequence Length:** 100 tokens
- **Output Dimensionality:** 768 dimensions
- **Similarity Function:** Cosine Similarity
- **Training Dataset:**
    - [LangCache Sentence Pairs (all)](https://huggingface.co/datasets/redis/langcache-sentencepairs-v2)
- **Language:** en
- **License:** apache-2.0

### Model Sources

- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)

### Full Model Architecture

```
SentenceTransformer(
  (0): Transformer({'max_seq_length': 100, 'do_lower_case': False, 'architecture': 'ModernBertModel'})
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
```

## Usage

### Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

```bash
pip install -U sentence-transformers
```

Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("redis/langcache-embed-v3")
# Run inference
sentences = [
    'According to him , the earth is the carrier of his artistic work , which is only integrated into the creative process by minimal changes .',
    'According to him , earth is the carrier of his artistic work being integrated into the creative process only by minimal changes .',
    'According to him , earth is the carrier of his creative work being integrated into the artistic process only by minimal changes .',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities)
# tensor([[0.9961, 0.9922, 0.9922],
#         [0.9922, 1.0000, 1.0000],
#         [0.9922, 1.0000, 1.0000]], dtype=torch.bfloat16)
```

<!--
### Direct Usage (Transformers)

<details><summary>Click to see the direct usage in Transformers</summary>

</details>
-->

<!--
### Downstream Usage (Sentence Transformers)

You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

</details>
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

## Evaluation

### Metrics

#### Information Retrieval

* Dataset: `test`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric             | Value     |
|:-------------------|:----------|
| cosine_accuracy@1  | 0.4127    |
| cosine_precision@1 | 0.4127    |
| cosine_recall@1    | 0.399     |
| **cosine_ndcg@10** | **0.595** |
| cosine_mrr@1       | 0.4127    |
| cosine_map@100     | 0.5432    |

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Dataset

#### LangCache Sentence Pairs (all)

* Dataset: [LangCache Sentence Pairs (all)](https://huggingface.co/datasets/redis/langcache-sentencepairs-v2)
* Size: 126,938 training samples
* Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
* Approximate statistics based on the first 1000 samples:
  |         | anchor                                                                            | positive                                                                          | negative                                                                          |
  |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
  | type    | string                                                                            | string                                                                            | string                                                                            |
  | details | <ul><li>min: 8 tokens</li><li>mean: 27.27 tokens</li><li>max: 49 tokens</li></ul> | <ul><li>min: 8 tokens</li><li>mean: 27.27 tokens</li><li>max: 48 tokens</li></ul> | <ul><li>min: 7 tokens</li><li>mean: 26.54 tokens</li><li>max: 61 tokens</li></ul> |
* Samples:
  | anchor                                                                                                                                      | positive                                                                                                                                      | negative                                                                                                                                      |
  |:--------------------------------------------------------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------|
  | <code>The newer Punts are still very much in existence today and race in the same fleets as the older boats .</code>                        | <code>The newer punts are still very much in existence today and run in the same fleets as the older boats .</code>                           | <code>how can I get financial freedom as soon as possible?</code>                                                                             |
  | <code>The newer punts are still very much in existence today and run in the same fleets as the older boats .</code>                         | <code>The newer Punts are still very much in existence today and race in the same fleets as the older boats .</code>                          | <code>The older Punts are still very much in existence today and race in the same fleets as the newer boats .</code>                          |
  | <code>Turner Valley , was at the Turner Valley Bar N Ranch Airport , southwest of the Turner Valley Bar N Ranch , Alberta , Canada .</code> | <code>Turner Valley , , was located at Turner Valley Bar N Ranch Airport , southwest of Turner Valley Bar N Ranch , Alberta , Canada .</code> | <code>Turner Valley Bar N Ranch Airport , , was located at Turner Valley Bar N Ranch , southwest of Turner Valley , Alberta , Canada .</code> |
* Loss: <code>losses.ArcFaceInBatchLoss</code> with these parameters:
  ```json
  {
      "scale": 20.0,
      "similarity_fct": "cos_sim",
      "gather_across_devices": false
  }
  ```

### Evaluation Dataset

#### LangCache Sentence Pairs (all)

* Dataset: [LangCache Sentence Pairs (all)](https://huggingface.co/datasets/redis/langcache-sentencepairs-v2)
* Size: 126,938 evaluation samples
* Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
* Approximate statistics based on the first 1000 samples:
  |         | anchor                                                                            | positive                                                                          | negative                                                                          |
  |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
  | type    | string                                                                            | string                                                                            | string                                                                            |
  | details | <ul><li>min: 8 tokens</li><li>mean: 27.27 tokens</li><li>max: 49 tokens</li></ul> | <ul><li>min: 8 tokens</li><li>mean: 27.27 tokens</li><li>max: 48 tokens</li></ul> | <ul><li>min: 7 tokens</li><li>mean: 26.54 tokens</li><li>max: 61 tokens</li></ul> |
* Samples:
  | anchor                                                                                                                                      | positive                                                                                                                                      | negative                                                                                                                                      |
  |:--------------------------------------------------------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------|
  | <code>The newer Punts are still very much in existence today and race in the same fleets as the older boats .</code>                        | <code>The newer punts are still very much in existence today and run in the same fleets as the older boats .</code>                           | <code>how can I get financial freedom as soon as possible?</code>                                                                             |
  | <code>The newer punts are still very much in existence today and run in the same fleets as the older boats .</code>                         | <code>The newer Punts are still very much in existence today and race in the same fleets as the older boats .</code>                          | <code>The older Punts are still very much in existence today and race in the same fleets as the newer boats .</code>                          |
  | <code>Turner Valley , was at the Turner Valley Bar N Ranch Airport , southwest of the Turner Valley Bar N Ranch , Alberta , Canada .</code> | <code>Turner Valley , , was located at Turner Valley Bar N Ranch Airport , southwest of Turner Valley Bar N Ranch , Alberta , Canada .</code> | <code>Turner Valley Bar N Ranch Airport , , was located at Turner Valley Bar N Ranch , southwest of Turner Valley , Alberta , Canada .</code> |
* Loss: <code>losses.ArcFaceInBatchLoss</code> with these parameters:
  ```json
  {
      "scale": 20.0,
      "similarity_fct": "cos_sim",
      "gather_across_devices": false
  }
  ```

### Training Logs
| Epoch | Step | test_cosine_ndcg@10 |
|:-----:|:----:|:-------------------:|
| -1    | -1   | 0.5950              |


### Framework Versions
- Python: 3.12.3
- Sentence Transformers: 5.1.0
- Transformers: 4.56.0
- PyTorch: 2.8.0+cu128
- Accelerate: 1.10.1
- Datasets: 4.0.0
- Tokenizers: 0.22.0

## Citation

### BibTeX

#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->