File size: 16,182 Bytes
1433a8a 3fe2151 6f339ce b18f4c8 a7ab361 3fe2151 a7ab361 3fe2151 a7ab361 3fe2151 a7ab361 3fe2151 a7ab361 3fe2151 a7ab361 3fe2151 1433a8a f6063b5 1433a8a c29f390 1433a8a c29f390 1433a8a f6063b5 1433a8a c29f390 f6063b5 c29f390 f6063b5 c29f390 f6063b5 c29f390 ca8f1a5 c29f390 f6063b5 c29f390 ca8f1a5 c29f390 1433a8a f6063b5 1433a8a b18f4c8 c29f390 1433a8a f6063b5 1433a8a c29f390 1433a8a 3fe2151 1433a8a 3fe2151 1433a8a c29f390 1433a8a f6063b5 c29f390 1433a8a ca8f1a5 1433a8a f6063b5 3fe2151 a7ab361 9abcaed a7ab361 3fe2151 1433a8a 3fe2151 6f339ce 1433a8a f6063b5 3fe2151 a7ab361 9abcaed a7ab361 3fe2151 1433a8a 3fe2151 6f339ce 1433a8a f6063b5 ca8f1a5 1433a8a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 |
---
language:
- en
license: apache-2.0
tags:
- biencoder
- sentence-transformers
- text-classification
- sentence-pair-classification
- semantic-similarity
- semantic-search
- retrieval
- reranking
- generated_from_trainer
- dataset_size:3587
- loss:CustomBCELoss
base_model: Alibaba-NLP/gte-modernbert-base
widget:
- source_sentence: Hunter College was originally Lehman College 's uptown campus .
sentences:
- Acquired programming includes the Irish soap `` Fair City `` and Finnish drama
`` Black Widows `` .
- According to the United States Census Bureau , the town has a total area of ;
of the area is land and 0.66 % is water .
- Hunter College originally was Lehman College Uptown Campus .
- source_sentence: He hoped to defeat them and then marry Ravonna .
sentences:
- Stillwater Creek received its official name in 1884 when William L. Couch established
his `` boomer colony `` on its banks .
- Note that the invertible of a matrix is always an exponential matrix .
- He hoped to defeat them and marry Ravonna .
- source_sentence: Born on February 2 , 1984 , Abrar Khan is a professional Pakistani
international Kabaddi player .
sentences:
- Born on February 2 , 1984 , Abrar Khan is a professional Pakistani international
Kabaddi player .
- Together , the paired mylohyoid muscles form a muscular floor for the oral cavity
of the mouth .
- Abrar Khan born 2 February 1984 is a Pakistani professional international Kabaddi
player .
- source_sentence: Certainly , `` Lucy was nothing like flat `` in physical form ,
social condition , and personality .
sentences:
- The real number is called the `` imaginary part `` of the real number ; the real
number is called the `` complex part `` of .
- From the Celebes lake , the captain Bullock observed the appearance of the corona
, while Gustav Fritsch accompanied an expedition to Aden .
- Certainly `` Lucy was , in physical form , social condition and personality ,
nothing like Shallow `` .
- source_sentence: The trio has performed besides Gesaffelstein , Justice , Bob Moses
and Lee Foss .
sentences:
- The trio has performed besides Gesaffelstein , Justice , Bob Moses and Lee Foss
.
- The suttas generally contain educational content , while other early Buddhist
texts deal with monastic discipline or vinaya .
- The trio has performed alongside Bob Moses , Justice , Gesaffelstein and Lee Foss
.
datasets:
- redis/langcache-sentencepairs-v2
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- cosine_accuracy@1
- cosine_precision@1
- cosine_recall@1
- cosine_ndcg@10
- cosine_mrr@1
- cosine_map@100
model-index:
- name: Redis fine-tuned BiEncoder model for semantic caching on LangCache
results:
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: test
type: test
metrics:
- type: cosine_accuracy@1
value: 0.5861241448475948
name: Cosine Accuracy@1
- type: cosine_precision@1
value: 0.5861241448475948
name: Cosine Precision@1
- type: cosine_recall@1
value: 0.5679885764966713
name: Cosine Recall@1
- type: cosine_ndcg@10
value: 0.773078207125666
name: Cosine Ndcg@10
- type: cosine_mrr@1
value: 0.5861241448475948
name: Cosine Mrr@1
- type: cosine_map@100
value: 0.7217228927629071
name: Cosine Map@100
---
# Redis fine-tuned BiEncoder model for semantic caching on LangCache
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [Alibaba-NLP/gte-modernbert-base](https://huggingface.co/Alibaba-NLP/gte-modernbert-base) on the [LangCache Sentence Pairs (all)](https://huggingface.co/datasets/redis/langcache-sentencepairs-v2) dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for sentence pair similarity.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [Alibaba-NLP/gte-modernbert-base](https://huggingface.co/Alibaba-NLP/gte-modernbert-base) <!-- at revision e7f32e3c00f91d699e8c43b53106206bcc72bb22 -->
- **Maximum Sequence Length:** 100 tokens
- **Output Dimensionality:** 768 dimensions
- **Similarity Function:** Cosine Similarity
- **Training Dataset:**
- [LangCache Sentence Pairs (all)](https://huggingface.co/datasets/redis/langcache-sentencepairs-v2)
- **Language:** en
- **License:** apache-2.0
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 100, 'do_lower_case': False, 'architecture': 'ModernBertModel'})
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("redis/langcache-embed-v3")
# Run inference
sentences = [
'The trio has performed besides Gesaffelstein , Justice , Bob Moses and Lee Foss .',
'The trio has performed besides Gesaffelstein , Justice , Bob Moses and Lee Foss .',
'The trio has performed alongside Bob Moses , Justice , Gesaffelstein and Lee Foss .',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities)
# tensor([[0.9961, 0.9961, 0.9844],
# [0.9961, 0.9961, 0.9844],
# [0.9844, 0.9844, 0.9961]], dtype=torch.bfloat16)
```
<!--
### Direct Usage (Transformers)
<details><summary>Click to see the direct usage in Transformers</summary>
</details>
-->
<!--
### Downstream Usage (Sentence Transformers)
You can finetune this model on your own dataset.
<details><summary>Click to expand</summary>
</details>
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
## Evaluation
### Metrics
#### Information Retrieval
* Dataset: `test`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | Value |
|:-------------------|:-----------|
| cosine_accuracy@1 | 0.5861 |
| cosine_precision@1 | 0.5861 |
| cosine_recall@1 | 0.568 |
| **cosine_ndcg@10** | **0.7731** |
| cosine_mrr@1 | 0.5861 |
| cosine_map@100 | 0.7217 |
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Dataset
#### LangCache Sentence Pairs (all)
* Dataset: [LangCache Sentence Pairs (all)](https://huggingface.co/datasets/redis/langcache-sentencepairs-v2)
* Size: 1,922 training samples
* Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
* Approximate statistics based on the first 1000 samples:
| | anchor | positive | negative |
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
| type | string | string | string |
| details | <ul><li>min: 8 tokens</li><li>mean: 27.26 tokens</li><li>max: 49 tokens</li></ul> | <ul><li>min: 8 tokens</li><li>mean: 27.24 tokens</li><li>max: 49 tokens</li></ul> | <ul><li>min: 9 tokens</li><li>mean: 27.09 tokens</li><li>max: 49 tokens</li></ul> |
* Samples:
| anchor | positive | negative |
|:--------------------------------------------------------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------|
| <code>The newer Punts are still very much in existence today and race in the same fleets as the older boats .</code> | <code>The newer punts are still very much in existence today and run in the same fleets as the older boats .</code> | <code>At that time , on June 22 , 1754 , Edward Bentham married Bentham Elizabeth Bates ( d . 1790 ) from Hampshire in the nearby county of Alton .</code> |
| <code>The newer punts are still very much in existence today and run in the same fleets as the older boats .</code> | <code>The newer Punts are still very much in existence today and race in the same fleets as the older boats .</code> | <code>In 2012 , Cornell 5th and Lehigh 8th , Cornell was also 4th in 2013 and 7th in 2014 .</code> |
| <code>Turner Valley , was at the Turner Valley Bar N Ranch Airport , southwest of the Turner Valley Bar N Ranch , Alberta , Canada .</code> | <code>Turner Valley , was at the Turner Valley Bar N Ranch Airport , southwest of the Turner Valley Bar N Ranch , Alberta , Canada .</code> | <code>Turner Valley Bar N Ranch Airport , , was located at Turner Valley Bar N Ranch , southwest of Turner Valley , Alberta , Canada .</code> |
* Loss: <code>losses.CustomBCELoss</code>
### Evaluation Dataset
#### LangCache Sentence Pairs (all)
* Dataset: [LangCache Sentence Pairs (all)](https://huggingface.co/datasets/redis/langcache-sentencepairs-v2)
* Size: 1,922 evaluation samples
* Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
* Approximate statistics based on the first 1000 samples:
| | anchor | positive | negative |
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
| type | string | string | string |
| details | <ul><li>min: 8 tokens</li><li>mean: 27.26 tokens</li><li>max: 49 tokens</li></ul> | <ul><li>min: 8 tokens</li><li>mean: 27.24 tokens</li><li>max: 49 tokens</li></ul> | <ul><li>min: 9 tokens</li><li>mean: 27.09 tokens</li><li>max: 49 tokens</li></ul> |
* Samples:
| anchor | positive | negative |
|:--------------------------------------------------------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------|
| <code>The newer Punts are still very much in existence today and race in the same fleets as the older boats .</code> | <code>The newer punts are still very much in existence today and run in the same fleets as the older boats .</code> | <code>At that time , on June 22 , 1754 , Edward Bentham married Bentham Elizabeth Bates ( d . 1790 ) from Hampshire in the nearby county of Alton .</code> |
| <code>The newer punts are still very much in existence today and run in the same fleets as the older boats .</code> | <code>The newer Punts are still very much in existence today and race in the same fleets as the older boats .</code> | <code>In 2012 , Cornell 5th and Lehigh 8th , Cornell was also 4th in 2013 and 7th in 2014 .</code> |
| <code>Turner Valley , was at the Turner Valley Bar N Ranch Airport , southwest of the Turner Valley Bar N Ranch , Alberta , Canada .</code> | <code>Turner Valley , was at the Turner Valley Bar N Ranch Airport , southwest of the Turner Valley Bar N Ranch , Alberta , Canada .</code> | <code>Turner Valley Bar N Ranch Airport , , was located at Turner Valley Bar N Ranch , southwest of Turner Valley , Alberta , Canada .</code> |
* Loss: <code>losses.CustomBCELoss</code>
### Training Logs
| Epoch | Step | test_cosine_ndcg@10 |
|:-----:|:----:|:-------------------:|
| -1 | -1 | 0.7731 |
### Framework Versions
- Python: 3.12.3
- Sentence Transformers: 5.1.0
- Transformers: 4.56.0
- PyTorch: 2.8.0+cu128
- Accelerate: 1.10.1
- Datasets: 4.0.0
- Tokenizers: 0.22.0
## Citation
### BibTeX
#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
--> |