whisper-base-zza / README.md
razhan's picture
End of training
b6202d6 verified
metadata
library_name: transformers
license: apache-2.0
base_model: openai/whisper-base
tags:
  - generated_from_trainer
datasets:
  - razhan/DOLMA-speech
metrics:
  - wer
model-index:
  - name: whisper-base-zza
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: razhan/DOLMA-speech zazaki
          type: razhan/DOLMA-speech
          args: zazaki
        metrics:
          - name: Wer
            type: wer
            value: 1.2574447646493756

whisper-base-zza

This model is a fine-tuned version of openai/whisper-base on the razhan/DOLMA-speech zazaki dataset. It achieves the following results on the evaluation set:

  • Loss: 4.0956
  • Wer: 1.2574
  • Cer: 1.0132

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 192
  • eval_batch_size: 128
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 2
  • total_train_batch_size: 384
  • total_eval_batch_size: 256
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 1
  • num_epochs: 5.0
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer Cer
No log 1.0 1 4.7831 1.2622 1.0146
No log 2.0 2 4.7831 1.2622 1.0146
No log 3.0 3 4.7831 1.2622 1.0146
No log 4.0 4 4.7831 1.2622 1.0146
No log 5.0 5 4.0956 1.2574 1.0132

Framework versions

  • Transformers 4.49.0.dev0
  • Pytorch 2.6.0+cu124
  • Datasets 3.2.0
  • Tokenizers 0.21.0