YOLOv8-Segmentation / README.md
qaihm-bot's picture
Upload README.md with huggingface_hub
1ea7a0d verified
|
raw
history blame
4.86 kB
metadata
library_name: pytorch
license: agpl-3.0
tags:
  - real_time
  - android
pipeline_tag: image-segmentation

YOLOv8-Segmentation: Optimized for Mobile Deployment

Real-time object segmentation optimized for mobile and edge by Ultralytics

Ultralytics YOLOv8 is a machine learning model that predicts bounding boxes, segmentation masks and classes of objects in an image.

This model is an implementation of YOLOv8-Segmentation found here.

More details on model performance across various devices, can be found here.

Model Details

  • Model Type: Semantic segmentation
  • Model Stats:
    • Model checkpoint: YOLOv8N-Seg
    • Input resolution: 640x640
    • Number of parameters: 3.43M
    • Model size: 13.2 MB
    • Number of output classes: 80
Model Device Chipset Target Runtime Inference Time (ms) Peak Memory Range (MB) Precision Primary Compute Unit Target Model
YOLOv8-Segmentation Samsung Galaxy S23 Snapdragon® 8 Gen 2 QNN 4.951 ms 5 - 7 MB FP16 NPU --
YOLOv8-Segmentation Samsung Galaxy S23 Snapdragon® 8 Gen 2 ONNX 7.858 ms 14 - 39 MB FP16 NPU --
YOLOv8-Segmentation Samsung Galaxy S24 Snapdragon® 8 Gen 3 QNN 3.571 ms 5 - 24 MB FP16 NPU --
YOLOv8-Segmentation Samsung Galaxy S24 Snapdragon® 8 Gen 3 ONNX 5.469 ms 7 - 68 MB FP16 NPU --
YOLOv8-Segmentation Snapdragon 8 Elite QRD Snapdragon® 8 Elite QNN 4.159 ms 5 - 52 MB FP16 NPU --
YOLOv8-Segmentation Snapdragon 8 Elite QRD Snapdragon® 8 Elite ONNX 4.665 ms 15 - 64 MB FP16 NPU --
YOLOv8-Segmentation SA7255P ADP SA7255P QNN 90.376 ms 1 - 10 MB FP16 NPU --
YOLOv8-Segmentation SA8255 (Proxy) SA8255P Proxy QNN 4.999 ms 5 - 8 MB FP16 NPU --
YOLOv8-Segmentation SA8295P ADP SA8295P QNN 9.161 ms 0 - 14 MB FP16 NPU --
YOLOv8-Segmentation SA8650 (Proxy) SA8650P Proxy QNN 4.947 ms 5 - 7 MB FP16 NPU --
YOLOv8-Segmentation SA8775P ADP SA8775P QNN 8.042 ms 0 - 10 MB FP16 NPU --
YOLOv8-Segmentation QCS8275 (Proxy) QCS8275 Proxy QNN 90.376 ms 1 - 10 MB FP16 NPU --
YOLOv8-Segmentation QCS8550 (Proxy) QCS8550 Proxy QNN 4.967 ms 5 - 7 MB FP16 NPU --
YOLOv8-Segmentation QCS9075 (Proxy) QCS9075 Proxy QNN 8.042 ms 0 - 10 MB FP16 NPU --
YOLOv8-Segmentation QCS8450 (Proxy) QCS8450 Proxy QNN 9.35 ms 5 - 38 MB FP16 NPU --
YOLOv8-Segmentation Snapdragon X Elite CRD Snapdragon® X Elite QNN 5.405 ms 5 - 5 MB FP16 NPU --
YOLOv8-Segmentation Snapdragon X Elite CRD Snapdragon® X Elite ONNX 7.902 ms 17 - 17 MB FP16 NPU --

License

  • The license for the original implementation of YOLOv8-Segmentation can be found here.
  • The license for the compiled assets for on-device deployment can be found here

References

Community

Usage and Limitations

Model may not be used for or in connection with any of the following applications:

  • Accessing essential private and public services and benefits;
  • Administration of justice and democratic processes;
  • Assessing or recognizing the emotional state of a person;
  • Biometric and biometrics-based systems, including categorization of persons based on sensitive characteristics;
  • Education and vocational training;
  • Employment and workers management;
  • Exploitation of the vulnerabilities of persons resulting in harmful behavior;
  • General purpose social scoring;
  • Law enforcement;
  • Management and operation of critical infrastructure;
  • Migration, asylum and border control management;
  • Predictive policing;
  • Real-time remote biometric identification in public spaces;
  • Recommender systems of social media platforms;
  • Scraping of facial images (from the internet or otherwise); and/or
  • Subliminal manipulation