|  | --- | 
					
						
						|  | library_name: pytorch | 
					
						
						|  | license: other | 
					
						
						|  | tags: | 
					
						
						|  | - android | 
					
						
						|  | pipeline_tag: keypoint-detection | 
					
						
						|  |  | 
					
						
						|  | --- | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | # HRNetPose: Optimized for Mobile Deployment | 
					
						
						|  | ## Perform accurate human pose estimation | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | HRNet performs pose estimation in high-resolution representations. | 
					
						
						|  |  | 
					
						
						|  | This model is an implementation of HRNetPose found [here](https://github.com/leoxiaobin/deep-high-resolution-net.pytorch). | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | This repository provides scripts to run HRNetPose on Qualcomm® devices. | 
					
						
						|  | More details on model performance across various devices, can be found | 
					
						
						|  | [here](https://aihub.qualcomm.com/models/hrnet_pose). | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | ### Model Details | 
					
						
						|  |  | 
					
						
						|  | - **Model Type:** Model_use_case.pose_estimation | 
					
						
						|  | - **Model Stats:** | 
					
						
						|  | - Model checkpoint: hrnet_posenet_FP32_state_dict | 
					
						
						|  | - Input resolution: 256x192 | 
					
						
						|  | - Number of parameters: 28.5M | 
					
						
						|  | - Model size (float): 109 MB | 
					
						
						|  | - Model size (w8a8): 28.1 MB | 
					
						
						|  |  | 
					
						
						|  | | Model | Precision | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Primary Compute Unit | Target Model | 
					
						
						|  | |---|---|---|---|---|---|---|---|---| | 
					
						
						|  | | HRNetPose | float | QCS8275 (Proxy) | Qualcomm® QCS8275 (Proxy) | TFLITE | 14.347 ms | 0 - 80 MB | NPU | [HRNetPose.tflite](https://huggingface.co/qualcomm/HRNetPose/blob/main/HRNetPose.tflite) | | 
					
						
						|  | | HRNetPose | float | QCS8275 (Proxy) | Qualcomm® QCS8275 (Proxy) | QNN_DLC | 14.241 ms | 1 - 43 MB | NPU | [HRNetPose.dlc](https://huggingface.co/qualcomm/HRNetPose/blob/main/HRNetPose.dlc) | | 
					
						
						|  | | HRNetPose | float | QCS8450 (Proxy) | Qualcomm® QCS8450 (Proxy) | TFLITE | 3.707 ms | 0 - 123 MB | NPU | [HRNetPose.tflite](https://huggingface.co/qualcomm/HRNetPose/blob/main/HRNetPose.tflite) | | 
					
						
						|  | | HRNetPose | float | QCS8450 (Proxy) | Qualcomm® QCS8450 (Proxy) | QNN_DLC | 4.832 ms | 0 - 56 MB | NPU | [HRNetPose.dlc](https://huggingface.co/qualcomm/HRNetPose/blob/main/HRNetPose.dlc) | | 
					
						
						|  | | HRNetPose | float | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | TFLITE | 2.616 ms | 0 - 48 MB | NPU | [HRNetPose.tflite](https://huggingface.co/qualcomm/HRNetPose/blob/main/HRNetPose.tflite) | | 
					
						
						|  | | HRNetPose | float | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | QNN_DLC | 2.595 ms | 1 - 15 MB | NPU | [HRNetPose.dlc](https://huggingface.co/qualcomm/HRNetPose/blob/main/HRNetPose.dlc) | | 
					
						
						|  | | HRNetPose | float | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | ONNX | 2.784 ms | 0 - 126 MB | NPU | [HRNetPose.onnx.zip](https://huggingface.co/qualcomm/HRNetPose/blob/main/HRNetPose.onnx.zip) | | 
					
						
						|  | | HRNetPose | float | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | TFLITE | 4.397 ms | 0 - 80 MB | NPU | [HRNetPose.tflite](https://huggingface.co/qualcomm/HRNetPose/blob/main/HRNetPose.tflite) | | 
					
						
						|  | | HRNetPose | float | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | QNN_DLC | 4.305 ms | 1 - 44 MB | NPU | [HRNetPose.dlc](https://huggingface.co/qualcomm/HRNetPose/blob/main/HRNetPose.dlc) | | 
					
						
						|  | | HRNetPose | float | SA7255P ADP | Qualcomm® SA7255P | TFLITE | 14.347 ms | 0 - 80 MB | NPU | [HRNetPose.tflite](https://huggingface.co/qualcomm/HRNetPose/blob/main/HRNetPose.tflite) | | 
					
						
						|  | | HRNetPose | float | SA7255P ADP | Qualcomm® SA7255P | QNN_DLC | 14.241 ms | 1 - 43 MB | NPU | [HRNetPose.dlc](https://huggingface.co/qualcomm/HRNetPose/blob/main/HRNetPose.dlc) | | 
					
						
						|  | | HRNetPose | float | SA8255 (Proxy) | Qualcomm® SA8255P (Proxy) | TFLITE | 2.621 ms | 0 - 18 MB | NPU | [HRNetPose.tflite](https://huggingface.co/qualcomm/HRNetPose/blob/main/HRNetPose.tflite) | | 
					
						
						|  | | HRNetPose | float | SA8255 (Proxy) | Qualcomm® SA8255P (Proxy) | QNN_DLC | 2.681 ms | 1 - 15 MB | NPU | [HRNetPose.dlc](https://huggingface.co/qualcomm/HRNetPose/blob/main/HRNetPose.dlc) | | 
					
						
						|  | | HRNetPose | float | SA8295P ADP | Qualcomm® SA8295P | TFLITE | 4.535 ms | 0 - 73 MB | NPU | [HRNetPose.tflite](https://huggingface.co/qualcomm/HRNetPose/blob/main/HRNetPose.tflite) | | 
					
						
						|  | | HRNetPose | float | SA8295P ADP | Qualcomm® SA8295P | QNN_DLC | 4.466 ms | 1 - 39 MB | NPU | [HRNetPose.dlc](https://huggingface.co/qualcomm/HRNetPose/blob/main/HRNetPose.dlc) | | 
					
						
						|  | | HRNetPose | float | SA8650 (Proxy) | Qualcomm® SA8650P (Proxy) | TFLITE | 2.622 ms | 0 - 17 MB | NPU | [HRNetPose.tflite](https://huggingface.co/qualcomm/HRNetPose/blob/main/HRNetPose.tflite) | | 
					
						
						|  | | HRNetPose | float | SA8650 (Proxy) | Qualcomm® SA8650P (Proxy) | QNN_DLC | 2.602 ms | 0 - 18 MB | NPU | [HRNetPose.dlc](https://huggingface.co/qualcomm/HRNetPose/blob/main/HRNetPose.dlc) | | 
					
						
						|  | | HRNetPose | float | SA8775P ADP | Qualcomm® SA8775P | TFLITE | 4.397 ms | 0 - 80 MB | NPU | [HRNetPose.tflite](https://huggingface.co/qualcomm/HRNetPose/blob/main/HRNetPose.tflite) | | 
					
						
						|  | | HRNetPose | float | SA8775P ADP | Qualcomm® SA8775P | QNN_DLC | 4.305 ms | 1 - 44 MB | NPU | [HRNetPose.dlc](https://huggingface.co/qualcomm/HRNetPose/blob/main/HRNetPose.dlc) | | 
					
						
						|  | | HRNetPose | float | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | TFLITE | 1.915 ms | 0 - 126 MB | NPU | [HRNetPose.tflite](https://huggingface.co/qualcomm/HRNetPose/blob/main/HRNetPose.tflite) | | 
					
						
						|  | | HRNetPose | float | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | QNN_DLC | 1.943 ms | 1 - 64 MB | NPU | [HRNetPose.dlc](https://huggingface.co/qualcomm/HRNetPose/blob/main/HRNetPose.dlc) | | 
					
						
						|  | | HRNetPose | float | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | ONNX | 1.992 ms | 0 - 80 MB | NPU | [HRNetPose.onnx.zip](https://huggingface.co/qualcomm/HRNetPose/blob/main/HRNetPose.onnx.zip) | | 
					
						
						|  | | HRNetPose | float | Samsung Galaxy S25 | Snapdragon® 8 Elite For Galaxy Mobile | TFLITE | 1.569 ms | 0 - 84 MB | NPU | [HRNetPose.tflite](https://huggingface.co/qualcomm/HRNetPose/blob/main/HRNetPose.tflite) | | 
					
						
						|  | | HRNetPose | float | Samsung Galaxy S25 | Snapdragon® 8 Elite For Galaxy Mobile | QNN_DLC | 1.57 ms | 1 - 48 MB | NPU | [HRNetPose.dlc](https://huggingface.co/qualcomm/HRNetPose/blob/main/HRNetPose.dlc) | | 
					
						
						|  | | HRNetPose | float | Samsung Galaxy S25 | Snapdragon® 8 Elite For Galaxy Mobile | ONNX | 1.677 ms | 0 - 51 MB | NPU | [HRNetPose.onnx.zip](https://huggingface.co/qualcomm/HRNetPose/blob/main/HRNetPose.onnx.zip) | | 
					
						
						|  | | HRNetPose | float | Snapdragon 8 Elite Gen 5 QRD | Snapdragon® 8 Elite Gen5 Mobile | TFLITE | 1.323 ms | 0 - 80 MB | NPU | [HRNetPose.tflite](https://huggingface.co/qualcomm/HRNetPose/blob/main/HRNetPose.tflite) | | 
					
						
						|  | | HRNetPose | float | Snapdragon 8 Elite Gen 5 QRD | Snapdragon® 8 Elite Gen5 Mobile | QNN_DLC | 1.273 ms | 1 - 49 MB | NPU | [HRNetPose.dlc](https://huggingface.co/qualcomm/HRNetPose/blob/main/HRNetPose.dlc) | | 
					
						
						|  | | HRNetPose | float | Snapdragon 8 Elite Gen 5 QRD | Snapdragon® 8 Elite Gen5 Mobile | ONNX | 1.414 ms | 1 - 55 MB | NPU | [HRNetPose.onnx.zip](https://huggingface.co/qualcomm/HRNetPose/blob/main/HRNetPose.onnx.zip) | | 
					
						
						|  | | HRNetPose | float | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN_DLC | 2.795 ms | 90 - 90 MB | NPU | [HRNetPose.dlc](https://huggingface.co/qualcomm/HRNetPose/blob/main/HRNetPose.dlc) | | 
					
						
						|  | | HRNetPose | float | Snapdragon X Elite CRD | Snapdragon® X Elite | ONNX | 2.675 ms | 55 - 55 MB | NPU | [HRNetPose.onnx.zip](https://huggingface.co/qualcomm/HRNetPose/blob/main/HRNetPose.onnx.zip) | | 
					
						
						|  | | HRNetPose | w8a16 | QCS8275 (Proxy) | Qualcomm® QCS8275 (Proxy) | QNN_DLC | 5.236 ms | 0 - 67 MB | NPU | [HRNetPose.dlc](https://huggingface.co/qualcomm/HRNetPose/blob/main/HRNetPose_w8a16.dlc) | | 
					
						
						|  | | HRNetPose | w8a16 | QCS8450 (Proxy) | Qualcomm® QCS8450 (Proxy) | QNN_DLC | 2.726 ms | 0 - 91 MB | NPU | [HRNetPose.dlc](https://huggingface.co/qualcomm/HRNetPose/blob/main/HRNetPose_w8a16.dlc) | | 
					
						
						|  | | HRNetPose | w8a16 | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | QNN_DLC | 1.914 ms | 0 - 15 MB | NPU | [HRNetPose.dlc](https://huggingface.co/qualcomm/HRNetPose/blob/main/HRNetPose_w8a16.dlc) | | 
					
						
						|  | | HRNetPose | w8a16 | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | ONNX | 2.07 ms | 0 - 22 MB | NPU | [HRNetPose.onnx.zip](https://huggingface.co/qualcomm/HRNetPose/blob/main/HRNetPose_w8a16.onnx.zip) | | 
					
						
						|  | | HRNetPose | w8a16 | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | QNN_DLC | 2.299 ms | 0 - 67 MB | NPU | [HRNetPose.dlc](https://huggingface.co/qualcomm/HRNetPose/blob/main/HRNetPose_w8a16.dlc) | | 
					
						
						|  | | HRNetPose | w8a16 | RB3 Gen 2 (Proxy) | Qualcomm® QCS6490 (Proxy) | ONNX | 198.984 ms | 25 - 48 MB | CPU | [HRNetPose.onnx.zip](https://huggingface.co/qualcomm/HRNetPose/blob/main/HRNetPose_w8a16.onnx.zip) | | 
					
						
						|  | | HRNetPose | w8a16 | RB5 (Proxy) | Qualcomm® QCS8250 (Proxy) | ONNX | 208.207 ms | 27 - 35 MB | CPU | [HRNetPose.onnx.zip](https://huggingface.co/qualcomm/HRNetPose/blob/main/HRNetPose_w8a16.onnx.zip) | | 
					
						
						|  | | HRNetPose | w8a16 | SA7255P ADP | Qualcomm® SA7255P | QNN_DLC | 5.236 ms | 0 - 67 MB | NPU | [HRNetPose.dlc](https://huggingface.co/qualcomm/HRNetPose/blob/main/HRNetPose_w8a16.dlc) | | 
					
						
						|  | | HRNetPose | w8a16 | SA8255 (Proxy) | Qualcomm® SA8255P (Proxy) | QNN_DLC | 1.906 ms | 0 - 16 MB | NPU | [HRNetPose.dlc](https://huggingface.co/qualcomm/HRNetPose/blob/main/HRNetPose_w8a16.dlc) | | 
					
						
						|  | | HRNetPose | w8a16 | SA8295P ADP | Qualcomm® SA8295P | QNN_DLC | 3.071 ms | 0 - 74 MB | NPU | [HRNetPose.dlc](https://huggingface.co/qualcomm/HRNetPose/blob/main/HRNetPose_w8a16.dlc) | | 
					
						
						|  | | HRNetPose | w8a16 | SA8650 (Proxy) | Qualcomm® SA8650P (Proxy) | QNN_DLC | 1.868 ms | 0 - 16 MB | NPU | [HRNetPose.dlc](https://huggingface.co/qualcomm/HRNetPose/blob/main/HRNetPose_w8a16.dlc) | | 
					
						
						|  | | HRNetPose | w8a16 | SA8775P ADP | Qualcomm® SA8775P | QNN_DLC | 2.299 ms | 0 - 67 MB | NPU | [HRNetPose.dlc](https://huggingface.co/qualcomm/HRNetPose/blob/main/HRNetPose_w8a16.dlc) | | 
					
						
						|  | | HRNetPose | w8a16 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | QNN_DLC | 1.407 ms | 0 - 91 MB | NPU | [HRNetPose.dlc](https://huggingface.co/qualcomm/HRNetPose/blob/main/HRNetPose_w8a16.dlc) | | 
					
						
						|  | | HRNetPose | w8a16 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | ONNX | 1.441 ms | 0 - 105 MB | NPU | [HRNetPose.onnx.zip](https://huggingface.co/qualcomm/HRNetPose/blob/main/HRNetPose_w8a16.onnx.zip) | | 
					
						
						|  | | HRNetPose | w8a16 | Samsung Galaxy S25 | Snapdragon® 8 Elite For Galaxy Mobile | QNN_DLC | 1.058 ms | 0 - 71 MB | NPU | [HRNetPose.dlc](https://huggingface.co/qualcomm/HRNetPose/blob/main/HRNetPose_w8a16.dlc) | | 
					
						
						|  | | HRNetPose | w8a16 | Samsung Galaxy S25 | Snapdragon® 8 Elite For Galaxy Mobile | ONNX | 1.195 ms | 0 - 79 MB | NPU | [HRNetPose.onnx.zip](https://huggingface.co/qualcomm/HRNetPose/blob/main/HRNetPose_w8a16.onnx.zip) | | 
					
						
						|  | | HRNetPose | w8a16 | Snapdragon 8 Elite Gen 5 QRD | Snapdragon® 8 Elite Gen5 Mobile | QNN_DLC | 0.807 ms | 0 - 73 MB | NPU | [HRNetPose.dlc](https://huggingface.co/qualcomm/HRNetPose/blob/main/HRNetPose_w8a16.dlc) | | 
					
						
						|  | | HRNetPose | w8a16 | Snapdragon 8 Elite Gen 5 QRD | Snapdragon® 8 Elite Gen5 Mobile | ONNX | 1.003 ms | 0 - 78 MB | NPU | [HRNetPose.onnx.zip](https://huggingface.co/qualcomm/HRNetPose/blob/main/HRNetPose_w8a16.onnx.zip) | | 
					
						
						|  | | HRNetPose | w8a16 | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN_DLC | 2.143 ms | 120 - 120 MB | NPU | [HRNetPose.dlc](https://huggingface.co/qualcomm/HRNetPose/blob/main/HRNetPose_w8a16.dlc) | | 
					
						
						|  | | HRNetPose | w8a16 | Snapdragon X Elite CRD | Snapdragon® X Elite | ONNX | 1.996 ms | 28 - 28 MB | NPU | [HRNetPose.onnx.zip](https://huggingface.co/qualcomm/HRNetPose/blob/main/HRNetPose_w8a16.onnx.zip) | | 
					
						
						|  | | HRNetPose | w8a8 | QCS8275 (Proxy) | Qualcomm® QCS8275 (Proxy) | TFLITE | 2.595 ms | 0 - 64 MB | NPU | [HRNetPose.tflite](https://huggingface.co/qualcomm/HRNetPose/blob/main/HRNetPose_w8a8.tflite) | | 
					
						
						|  | | HRNetPose | w8a8 | QCS8275 (Proxy) | Qualcomm® QCS8275 (Proxy) | QNN_DLC | 2.846 ms | 0 - 65 MB | NPU | [HRNetPose.dlc](https://huggingface.co/qualcomm/HRNetPose/blob/main/HRNetPose_w8a8.dlc) | | 
					
						
						|  | | HRNetPose | w8a8 | QCS8450 (Proxy) | Qualcomm® QCS8450 (Proxy) | TFLITE | 1.258 ms | 0 - 103 MB | NPU | [HRNetPose.tflite](https://huggingface.co/qualcomm/HRNetPose/blob/main/HRNetPose_w8a8.tflite) | | 
					
						
						|  | | HRNetPose | w8a8 | QCS8450 (Proxy) | Qualcomm® QCS8450 (Proxy) | QNN_DLC | 1.696 ms | 0 - 90 MB | NPU | [HRNetPose.dlc](https://huggingface.co/qualcomm/HRNetPose/blob/main/HRNetPose_w8a8.dlc) | | 
					
						
						|  | | HRNetPose | w8a8 | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | TFLITE | 0.959 ms | 0 - 163 MB | NPU | [HRNetPose.tflite](https://huggingface.co/qualcomm/HRNetPose/blob/main/HRNetPose_w8a8.tflite) | | 
					
						
						|  | | HRNetPose | w8a8 | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | QNN_DLC | 1.121 ms | 0 - 106 MB | NPU | [HRNetPose.dlc](https://huggingface.co/qualcomm/HRNetPose/blob/main/HRNetPose_w8a8.dlc) | | 
					
						
						|  | | HRNetPose | w8a8 | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | TFLITE | 1.319 ms | 0 - 65 MB | NPU | [HRNetPose.tflite](https://huggingface.co/qualcomm/HRNetPose/blob/main/HRNetPose_w8a8.tflite) | | 
					
						
						|  | | HRNetPose | w8a8 | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | QNN_DLC | 1.457 ms | 0 - 66 MB | NPU | [HRNetPose.dlc](https://huggingface.co/qualcomm/HRNetPose/blob/main/HRNetPose_w8a8.dlc) | | 
					
						
						|  | | HRNetPose | w8a8 | RB3 Gen 2 (Proxy) | Qualcomm® QCS6490 (Proxy) | TFLITE | 3.735 ms | 0 - 80 MB | NPU | [HRNetPose.tflite](https://huggingface.co/qualcomm/HRNetPose/blob/main/HRNetPose_w8a8.tflite) | | 
					
						
						|  | | HRNetPose | w8a8 | RB5 (Proxy) | Qualcomm® QCS8250 (Proxy) | TFLITE | 17.182 ms | 0 - 2 MB | NPU | [HRNetPose.tflite](https://huggingface.co/qualcomm/HRNetPose/blob/main/HRNetPose_w8a8.tflite) | | 
					
						
						|  | | HRNetPose | w8a8 | SA7255P ADP | Qualcomm® SA7255P | TFLITE | 2.595 ms | 0 - 64 MB | NPU | [HRNetPose.tflite](https://huggingface.co/qualcomm/HRNetPose/blob/main/HRNetPose_w8a8.tflite) | | 
					
						
						|  | | HRNetPose | w8a8 | SA7255P ADP | Qualcomm® SA7255P | QNN_DLC | 2.846 ms | 0 - 65 MB | NPU | [HRNetPose.dlc](https://huggingface.co/qualcomm/HRNetPose/blob/main/HRNetPose_w8a8.dlc) | | 
					
						
						|  | | HRNetPose | w8a8 | SA8255 (Proxy) | Qualcomm® SA8255P (Proxy) | TFLITE | 0.955 ms | 0 - 160 MB | NPU | [HRNetPose.tflite](https://huggingface.co/qualcomm/HRNetPose/blob/main/HRNetPose_w8a8.tflite) | | 
					
						
						|  | | HRNetPose | w8a8 | SA8255 (Proxy) | Qualcomm® SA8255P (Proxy) | QNN_DLC | 1.109 ms | 0 - 101 MB | NPU | [HRNetPose.dlc](https://huggingface.co/qualcomm/HRNetPose/blob/main/HRNetPose_w8a8.dlc) | | 
					
						
						|  | | HRNetPose | w8a8 | SA8295P ADP | Qualcomm® SA8295P | TFLITE | 1.676 ms | 0 - 70 MB | NPU | [HRNetPose.tflite](https://huggingface.co/qualcomm/HRNetPose/blob/main/HRNetPose_w8a8.tflite) | | 
					
						
						|  | | HRNetPose | w8a8 | SA8295P ADP | Qualcomm® SA8295P | QNN_DLC | 1.887 ms | 0 - 72 MB | NPU | [HRNetPose.dlc](https://huggingface.co/qualcomm/HRNetPose/blob/main/HRNetPose_w8a8.dlc) | | 
					
						
						|  | | HRNetPose | w8a8 | SA8650 (Proxy) | Qualcomm® SA8650P (Proxy) | TFLITE | 0.967 ms | 0 - 162 MB | NPU | [HRNetPose.tflite](https://huggingface.co/qualcomm/HRNetPose/blob/main/HRNetPose_w8a8.tflite) | | 
					
						
						|  | | HRNetPose | w8a8 | SA8650 (Proxy) | Qualcomm® SA8650P (Proxy) | QNN_DLC | 1.126 ms | 0 - 68 MB | NPU | [HRNetPose.dlc](https://huggingface.co/qualcomm/HRNetPose/blob/main/HRNetPose_w8a8.dlc) | | 
					
						
						|  | | HRNetPose | w8a8 | SA8775P ADP | Qualcomm® SA8775P | TFLITE | 1.319 ms | 0 - 65 MB | NPU | [HRNetPose.tflite](https://huggingface.co/qualcomm/HRNetPose/blob/main/HRNetPose_w8a8.tflite) | | 
					
						
						|  | | HRNetPose | w8a8 | SA8775P ADP | Qualcomm® SA8775P | QNN_DLC | 1.457 ms | 0 - 66 MB | NPU | [HRNetPose.dlc](https://huggingface.co/qualcomm/HRNetPose/blob/main/HRNetPose_w8a8.dlc) | | 
					
						
						|  | | HRNetPose | w8a8 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | TFLITE | 0.705 ms | 0 - 101 MB | NPU | [HRNetPose.tflite](https://huggingface.co/qualcomm/HRNetPose/blob/main/HRNetPose_w8a8.tflite) | | 
					
						
						|  | | HRNetPose | w8a8 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | QNN_DLC | 0.82 ms | 0 - 90 MB | NPU | [HRNetPose.dlc](https://huggingface.co/qualcomm/HRNetPose/blob/main/HRNetPose_w8a8.dlc) | | 
					
						
						|  | | HRNetPose | w8a8 | Samsung Galaxy S25 | Snapdragon® 8 Elite For Galaxy Mobile | TFLITE | 0.569 ms | 0 - 70 MB | NPU | [HRNetPose.tflite](https://huggingface.co/qualcomm/HRNetPose/blob/main/HRNetPose_w8a8.tflite) | | 
					
						
						|  | | HRNetPose | w8a8 | Samsung Galaxy S25 | Snapdragon® 8 Elite For Galaxy Mobile | QNN_DLC | 0.645 ms | 0 - 74 MB | NPU | [HRNetPose.dlc](https://huggingface.co/qualcomm/HRNetPose/blob/main/HRNetPose_w8a8.dlc) | | 
					
						
						|  | | HRNetPose | w8a8 | Snapdragon 8 Elite Gen 5 QRD | Snapdragon® 8 Elite Gen5 Mobile | TFLITE | 0.54 ms | 0 - 65 MB | NPU | [HRNetPose.tflite](https://huggingface.co/qualcomm/HRNetPose/blob/main/HRNetPose_w8a8.tflite) | | 
					
						
						|  | | HRNetPose | w8a8 | Snapdragon 8 Elite Gen 5 QRD | Snapdragon® 8 Elite Gen5 Mobile | QNN_DLC | 0.568 ms | 0 - 72 MB | NPU | [HRNetPose.dlc](https://huggingface.co/qualcomm/HRNetPose/blob/main/HRNetPose_w8a8.dlc) | | 
					
						
						|  | | HRNetPose | w8a8 | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN_DLC | 1.26 ms | 161 - 161 MB | NPU | [HRNetPose.dlc](https://huggingface.co/qualcomm/HRNetPose/blob/main/HRNetPose_w8a8.dlc) | | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | ## Installation | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | Install the package via pip: | 
					
						
						|  | ```bash | 
					
						
						|  | pip install "qai-hub-models[hrnet-pose]" torch==2.4.1 --trusted-host download.openmmlab.com -f https://download.openmmlab.com/mmcv/dist/cpu/torch2.4/index.html -f https://qaihub-public-python-wheels.s3.us-west-2.amazonaws.com/index.html | 
					
						
						|  | ``` | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | ## Configure Qualcomm® AI Hub to run this model on a cloud-hosted device | 
					
						
						|  |  | 
					
						
						|  | Sign-in to [Qualcomm® AI Hub](https://app.aihub.qualcomm.com/) with your | 
					
						
						|  | Qualcomm® ID. Once signed in navigate to `Account -> Settings -> API Token`. | 
					
						
						|  |  | 
					
						
						|  | With this API token, you can configure your client to run models on the cloud | 
					
						
						|  | hosted devices. | 
					
						
						|  | ```bash | 
					
						
						|  | qai-hub configure --api_token API_TOKEN | 
					
						
						|  | ``` | 
					
						
						|  | Navigate to [docs](https://app.aihub.qualcomm.com/docs/) for more information. | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | ## Demo off target | 
					
						
						|  |  | 
					
						
						|  | The package contains a simple end-to-end demo that downloads pre-trained | 
					
						
						|  | weights and runs this model on a sample input. | 
					
						
						|  |  | 
					
						
						|  | ```bash | 
					
						
						|  | python -m qai_hub_models.models.hrnet_pose.demo | 
					
						
						|  | ``` | 
					
						
						|  |  | 
					
						
						|  | The above demo runs a reference implementation of pre-processing, model | 
					
						
						|  | inference, and post processing. | 
					
						
						|  |  | 
					
						
						|  | **NOTE**: If you want running in a Jupyter Notebook or Google Colab like | 
					
						
						|  | environment, please add the following to your cell (instead of the above). | 
					
						
						|  | ``` | 
					
						
						|  | %run -m qai_hub_models.models.hrnet_pose.demo | 
					
						
						|  | ``` | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | ### Run model on a cloud-hosted device | 
					
						
						|  |  | 
					
						
						|  | In addition to the demo, you can also run the model on a cloud-hosted Qualcomm® | 
					
						
						|  | device. This script does the following: | 
					
						
						|  | * Performance check on-device on a cloud-hosted device | 
					
						
						|  | * Downloads compiled assets that can be deployed on-device for Android. | 
					
						
						|  | * Accuracy check between PyTorch and on-device outputs. | 
					
						
						|  |  | 
					
						
						|  | ```bash | 
					
						
						|  | python -m qai_hub_models.models.hrnet_pose.export | 
					
						
						|  | ``` | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | ## How does this work? | 
					
						
						|  |  | 
					
						
						|  | This [export script](https://aihub.qualcomm.com/models/hrnet_pose/qai_hub_models/models/HRNetPose/export.py) | 
					
						
						|  | leverages [Qualcomm® AI Hub](https://aihub.qualcomm.com/) to optimize, validate, and deploy this model | 
					
						
						|  | on-device. Lets go through each step below in detail: | 
					
						
						|  |  | 
					
						
						|  | Step 1: **Compile model for on-device deployment** | 
					
						
						|  |  | 
					
						
						|  | To compile a PyTorch model for on-device deployment, we first trace the model | 
					
						
						|  | in memory using the `jit.trace` and then call the `submit_compile_job` API. | 
					
						
						|  |  | 
					
						
						|  | ```python | 
					
						
						|  | import torch | 
					
						
						|  |  | 
					
						
						|  | import qai_hub as hub | 
					
						
						|  | from qai_hub_models.models.hrnet_pose import Model | 
					
						
						|  |  | 
					
						
						|  | # Load the model | 
					
						
						|  | torch_model = Model.from_pretrained() | 
					
						
						|  |  | 
					
						
						|  | # Device | 
					
						
						|  | device = hub.Device("Samsung Galaxy S25") | 
					
						
						|  |  | 
					
						
						|  | # Trace model | 
					
						
						|  | input_shape = torch_model.get_input_spec() | 
					
						
						|  | sample_inputs = torch_model.sample_inputs() | 
					
						
						|  |  | 
					
						
						|  | pt_model = torch.jit.trace(torch_model, [torch.tensor(data[0]) for _, data in sample_inputs.items()]) | 
					
						
						|  |  | 
					
						
						|  | # Compile model on a specific device | 
					
						
						|  | compile_job = hub.submit_compile_job( | 
					
						
						|  | model=pt_model, | 
					
						
						|  | device=device, | 
					
						
						|  | input_specs=torch_model.get_input_spec(), | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | # Get target model to run on-device | 
					
						
						|  | target_model = compile_job.get_target_model() | 
					
						
						|  |  | 
					
						
						|  | ``` | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | Step 2: **Performance profiling on cloud-hosted device** | 
					
						
						|  |  | 
					
						
						|  | After compiling models from step 1. Models can be profiled model on-device using the | 
					
						
						|  | `target_model`. Note that this scripts runs the model on a device automatically | 
					
						
						|  | provisioned in the cloud.  Once the job is submitted, you can navigate to a | 
					
						
						|  | provided job URL to view a variety of on-device performance metrics. | 
					
						
						|  | ```python | 
					
						
						|  | profile_job = hub.submit_profile_job( | 
					
						
						|  | model=target_model, | 
					
						
						|  | device=device, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | ``` | 
					
						
						|  |  | 
					
						
						|  | Step 3: **Verify on-device accuracy** | 
					
						
						|  |  | 
					
						
						|  | To verify the accuracy of the model on-device, you can run on-device inference | 
					
						
						|  | on sample input data on the same cloud hosted device. | 
					
						
						|  | ```python | 
					
						
						|  | input_data = torch_model.sample_inputs() | 
					
						
						|  | inference_job = hub.submit_inference_job( | 
					
						
						|  | model=target_model, | 
					
						
						|  | device=device, | 
					
						
						|  | inputs=input_data, | 
					
						
						|  | ) | 
					
						
						|  | on_device_output = inference_job.download_output_data() | 
					
						
						|  |  | 
					
						
						|  | ``` | 
					
						
						|  | With the output of the model, you can compute like PSNR, relative errors or | 
					
						
						|  | spot check the output with expected output. | 
					
						
						|  |  | 
					
						
						|  | **Note**: This on-device profiling and inference requires access to Qualcomm® | 
					
						
						|  | AI Hub. [Sign up for access](https://myaccount.qualcomm.com/signup). | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | ## Run demo on a cloud-hosted device | 
					
						
						|  |  | 
					
						
						|  | You can also run the demo on-device. | 
					
						
						|  |  | 
					
						
						|  | ```bash | 
					
						
						|  | python -m qai_hub_models.models.hrnet_pose.demo --eval-mode on-device | 
					
						
						|  | ``` | 
					
						
						|  |  | 
					
						
						|  | **NOTE**: If you want running in a Jupyter Notebook or Google Colab like | 
					
						
						|  | environment, please add the following to your cell (instead of the above). | 
					
						
						|  | ``` | 
					
						
						|  | %run -m qai_hub_models.models.hrnet_pose.demo -- --eval-mode on-device | 
					
						
						|  | ``` | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | ## Deploying compiled model to Android | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | The models can be deployed using multiple runtimes: | 
					
						
						|  | - TensorFlow Lite (`.tflite` export): [This | 
					
						
						|  | tutorial](https://www.tensorflow.org/lite/android/quickstart) provides a | 
					
						
						|  | guide to deploy the .tflite model in an Android application. | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | - QNN (`.so` export ): This [sample | 
					
						
						|  | app](https://docs.qualcomm.com/bundle/publicresource/topics/80-63442-50/sample_app.html) | 
					
						
						|  | provides instructions on how to use the `.so` shared library  in an Android application. | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | ## View on Qualcomm® AI Hub | 
					
						
						|  | Get more details on HRNetPose's performance across various devices [here](https://aihub.qualcomm.com/models/hrnet_pose). | 
					
						
						|  | Explore all available models on [Qualcomm® AI Hub](https://aihub.qualcomm.com/) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | ## License | 
					
						
						|  | * The license for the original implementation of HRNetPose can be found | 
					
						
						|  | [here](https://github.com/leoxiaobin/deep-high-resolution-net.pytorch/blob/master/LICENSE). | 
					
						
						|  | * The license for the compiled assets for on-device deployment can be found [here](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/Qualcomm+AI+Hub+Proprietary+License.pdf) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | ## References | 
					
						
						|  | * [Deep High-Resolution Representation Learning for Human Pose Estimation](https://arxiv.org/abs/1902.09212) | 
					
						
						|  | * [Source Model Implementation](https://github.com/leoxiaobin/deep-high-resolution-net.pytorch) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | ## Community | 
					
						
						|  | * Join [our AI Hub Slack community](https://aihub.qualcomm.com/community/slack) to collaborate, post questions and learn more about on-device AI. | 
					
						
						|  | * For questions or feedback please [reach out to us](mailto:[email protected]). | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  |