Image Classification
Transformers
Safetensors
English
vit
explicit-content-detection
mini
art
sensual-content-detection
Anime
prithivMLmods's picture
Update README.md
d070f62 verified
---
license: apache-2.0
datasets:
- strangerguardhf/NSFW-MultiDomain-Classification-v2.0
language:
- en
base_model:
- google/vit-base-patch16-224
pipeline_tag: image-classification
library_name: transformers
tags:
- explicit-content-detection
- mini
- art
- sensual-content-detection
- Anime
---
![2.png](https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/rhxwuZq4nbQhPBGDVPc_v.png)
# **vit-mini-explicit-content**
> **vit-mini-explicit-content** is an image classification vision-language model fine-tuned from **vit-base-patch16-224-in21k** for a single-label classification task. It categorizes images based on their explicitness using the **ViTForImageClassification** architecture.
> \[!Note]
> This model is designed to promote safe, respectful, and responsible online spaces. It does **not** generate explicit content; it only classifies images. Misuse may violate platform or regional policies and is strongly discouraged.
> [!Note]
An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale : https://arxiv.org/abs/2010.11929, Visual Transformers: Token-based Image Representation and Processing for Computer Vision: https://arxiv.org/pdf/2006.03677
> [!Important]
Note: Explicit, sensual, and pornographic content may appear in the results; however, all of them are considered not safe for work.
```py
Classification Report:
precision recall f1-score support
Anime Picture 0.9077 0.7937 0.8469 5600
Extincing & Sensual 0.9245 0.9717 0.9475 5618
Hentai 0.8680 0.9391 0.9021 5600
Pornography 0.9614 0.9544 0.9579 5970
Safe for Work 0.9235 0.9235 0.9235 6000
accuracy 0.9171 28788
macro avg 0.9170 0.9165 0.9156 28788
weighted avg 0.9177 0.9171 0.9163 28788
```
![download.png](https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/VaSWP4-JjXrczImMGufQE.png)
---
The model categorizes images into five classes:
* **Class 0:** Anime Picture
* **Class 1:** Enticing & Sensual
* **Class 2:** Hentai
* **Class 3:** Pornography
* **Class 4:** Safe for Work
# **Run with Transformers**
```python
!pip install -q transformers torch pillow gradio
```
```python
import gradio as gr
from transformers import ViTImageProcessor, ViTForImageClassification
from PIL import Image
import torch
# Load model and processor
model_name = "prithivMLmods/vit-mini-explicit-content" # Updated model path
model = ViTForImageClassification.from_pretrained(model_name)
processor = ViTImageProcessor.from_pretrained(model_name)
# Updated label mapping
labels = {
"0": "Anime Picture",
"1": "Enticing & Sensual",
"2": "Hentai",
"3": "Pornography",
"4": "Safe for Work"
}
def explicit_content_detection(image):
"""Predicts the type of content in the image."""
image = Image.fromarray(image).convert("RGB")
inputs = processor(images=image, return_tensors="pt")
with torch.no_grad():
outputs = model(**inputs)
logits = outputs.logits
probs = torch.nn.functional.softmax(logits, dim=1).squeeze().tolist()
predictions = {labels[str(i)]: round(probs[i], 3) for i in range(len(probs))}
return predictions
# Create Gradio interface
iface = gr.Interface(
fn=explicit_content_detection,
inputs=gr.Image(type="numpy"),
outputs=gr.Label(label="Prediction Scores"),
title="vit-mini-explicit-content",
description="Upload an image to classify whether it is anime, enticing & sensual, hentai, pornographic, or safe for work."
)
# Launch the app
if __name__ == "__main__":
iface.launch()
```
---
## Demo Inference
> [!warning]
Anime Picture
![Screenshot 2025-05-19 at 22-30-24 vit-mini-explicit-content.png](https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/nzHUSO_YN-t2yOMEDT37B.png)
> [!warning]
Extincing & Sensual
![Screenshot 2025-05-19 at 22-30-56 vit-mini-explicit-content(1).png](https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/78om_bUqjyjyLrrUkWPc2.png)
![Screenshot 2025-05-19 at 22-31-48 vit-mini-explicit-content(1).png](https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/Y6haGPcaoaOj_uM8MX0E7.png)
> [!warning]
Hentai
![Screenshot 2025-05-19 at 22-32-42 vit-mini-explicit-content(1).png](https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/A48Ow5GllARvz66ZL08Tn.png)
> [!warning]
Pornography
![Screenshot 2025-05-19 at 22-37-31 vit-mini-explicit-content(1).png](https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/W0CPq8cPb79fpNEqVLIU_.png)
> [!warning]
Safe for Work
![Screenshot 2025-05-19 at 22-27-20 vit-mini-explicit-content.png](https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/R3hnvsYOFh9wA4Y60REKu.png)
---
# **Recommended Use Cases**
* Image moderation pipelines
* Parental and institutional content filters
* Dataset cleansing before training
* Online safety and well-being platforms
* Enhancing search engine filtering
# **Discouraged / Prohibited Use**
* Non-consensual or malicious monitoring
* Automated judgments without human review
* Misrepresentation of moderation systems
* Use in unlawful or unethical surveillance
* Harassment, exploitation, or shaming