prithivMLmods's picture
Update README.md
c1001e7 verified
|
raw
history blame
3.07 kB
---
license: apache-2.0
pipeline_tag: image-classification
library_name: transformers
tags:
- deep-fake
- ViT
- detection
- Image
base_model:
- google/vit-base-patch16-224-in21k
datasets:
- prithivMLmods/OpenDeepfake-Preview
language:
- en
---
![DF.png](https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/du5WF3GmRq5czAvXyuggx.png)
# deepfake-detector-model
> deepfake-detector-model is a vision-language model fine-tuned from `google/vit-base-patch16-224-in21k` for binary image classification. It is trained to detect whether an image is fake or real using the *OpenDeepfake-Preview* dataset. The model uses the `ViTForImageClassification` architecture.
```py
Classification Report:
precision recall f1-score support
fake 0.9817 0.9748 0.9782 10000
real 0.9750 0.9818 0.9784 9999
accuracy 0.9783 19999
macro avg 0.9783 0.9783 0.9783 19999
weighted avg 0.9783 0.9783 0.9783 19999
```
![download.png](https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/QqU-DkI3sy1-HTpuE3OVz.png)
---
## Label Space: 2 Classes
The model classifies an image as either:
```
Class 0: fake
Class 1: real
```
---
## Install Dependencies
```bash
pip install -q transformers torch pillow gradio hf_xet
```
---
## Inference Code
```python
import gradio as gr
from transformers import ViTImageProcessor, ViTForImageClassification
from PIL import Image
import torch
# Load model and processor
model_name = "prithivMLmods/deepfake-detector-model"
model = ViTForImageClassification.from_pretrained(model_name)
processor = ViTImageProcessor.from_pretrained(model_name)
# Updated label mapping
labels_list = ['fake', 'real']
def classify_image(image):
image = Image.fromarray(image).convert("RGB")
inputs = processor(images=image, return_tensors="pt")
with torch.no_grad():
outputs = model(**inputs)
logits = outputs.logits
probs = torch.nn.functional.softmax(logits, dim=1).squeeze().tolist()
prediction = {
labels_list[i]: round(probs[i], 3) for i in range(len(probs))
}
return prediction
# Gradio Interface
iface = gr.Interface(
fn=classify_image,
inputs=gr.Image(type="numpy"),
outputs=gr.Label(num_top_classes=2, label="Deepfake Detection"),
title="deepfake-detector-model",
description="Upload an image to detect whether it is AI-generated (fake) or a real photograph (real), using the OpenDeepfake-Preview dataset."
)
if __name__ == "__main__":
iface.launch()
```
---
## Intended Use
`deepfake-detector-model` is designed for:
* **Deepfake Detection** – Identify AI-generated or manipulated images.
* **Content Moderation** – Flag synthetic or fake visual content.
* **Dataset Curation** – Remove synthetic samples from mixed datasets.
* **Visual Authenticity Verification** – Check the integrity of visual media.
* **Digital Forensics** – Support image source verification and traceability.