metadata
license: apache-2.0
pipeline_tag: image-classification
library_name: transformers
tags:
- deep-fake
- ViT
- detection
- Image
base_model:
- google/vit-base-patch16-224-in21k
datasets:
- prithivMLmods/OpenDeepfake-Preview
language:
- en
deepfake-detector-model
deepfake-detector-model is a vision-language model fine-tuned from
google/vit-base-patch16-224-in21k
for binary image classification. It is trained to detect whether an image is fake or real using the OpenDeepfake-Preview dataset. The model uses theViTForImageClassification
architecture.
Label Space: 2 Classes
The model classifies an image as either:
Class 0: fake
Class 1: real
Install Dependencies
pip install -q transformers torch pillow gradio hf_xet
Inference Code
import gradio as gr
from transformers import ViTImageProcessor, ViTForImageClassification
from PIL import Image
import torch
# Load model and processor
model_name = "your-username/deepfake-detector-model"
model = ViTForImageClassification.from_pretrained(model_name)
processor = ViTImageProcessor.from_pretrained(model_name)
# Updated label mapping
labels_list = ['fake', 'real']
def classify_image(image):
image = Image.fromarray(image).convert("RGB")
inputs = processor(images=image, return_tensors="pt")
with torch.no_grad():
outputs = model(**inputs)
logits = outputs.logits
probs = torch.nn.functional.softmax(logits, dim=1).squeeze().tolist()
prediction = {
labels_list[i]: round(probs[i], 3) for i in range(len(probs))
}
return prediction
# Gradio Interface
iface = gr.Interface(
fn=classify_image,
inputs=gr.Image(type="numpy"),
outputs=gr.Label(num_top_classes=2, label="Deepfake Detection"),
title="deepfake-detector-model",
description="Upload an image to detect whether it is AI-generated (fake) or a real photograph (real), using the OpenDeepfake-Preview dataset."
)
if __name__ == "__main__":
iface.launch()
Intended Use
deepfake-detector-model
is designed for:
- Deepfake Detection – Identify AI-generated or manipulated images.
- Content Moderation – Flag synthetic or fake visual content.
- Dataset Curation – Remove synthetic samples from mixed datasets.
- Visual Authenticity Verification – Check the integrity of visual media.
- Digital Forensics – Support image source verification and traceability.