prithivMLmods's picture
Update README.md
d742eed verified
---
license: apache-2.0
datasets:
- deepghs/anime_classification
language:
- en
base_model:
- google/siglip2-base-patch16-224
pipeline_tag: image-classification
library_name: transformers
tags:
- Anime
- SigLIP2
- Image-Detection
- 3D
- Comic
- Illustration
- Bangumi
---
![SD.png](https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/JALO6mW1WZSHjUxsotxW2.png)
# **Anime-Classification-v1.0**
> **Anime-Classification-v1.0** is an image classification vision-language encoder model fine-tuned from **google/siglip2-base-patch16-224** for a single-label classification task. It is designed to classify anime-related images using the **SiglipForImageClassification** architecture.
```py
Classification Report:
precision recall f1-score support
3D 0.7979 0.8443 0.8204 4649
Bangumi 0.8677 0.8728 0.8702 4914
Comic 0.9716 0.9233 0.9468 5746
Illustration 0.8204 0.8186 0.8195 6064
accuracy 0.8648 21373
macro avg 0.8644 0.8647 0.8642 21373
weighted avg 0.8670 0.8648 0.8656 21373
```
![download.png](https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/5jH61328ZIygBR0ExlWVv.png)
---
The model categorizes images into 4 anime-related classes:
```
Class 0: "3D"
Class 1: "Bangumi"
Class 2: "Comic"
Class 3: "Illustration"
```
---
## **Install dependencies**
```python
!pip install -q transformers torch pillow gradio
```
---
## **Inference Code**
```python
import gradio as gr
from transformers import AutoImageProcessor, SiglipForImageClassification
from PIL import Image
import torch
# Load model and processor
model_name = "prithivMLmods/Anime-Classification-v1.0" # New model name
model = SiglipForImageClassification.from_pretrained(model_name)
processor = AutoImageProcessor.from_pretrained(model_name)
def classify_anime_image(image):
"""Predicts the anime category for an input image."""
image = Image.fromarray(image).convert("RGB")
inputs = processor(images=image, return_tensors="pt")
with torch.no_grad():
outputs = model(**inputs)
logits = outputs.logits
probs = torch.nn.functional.softmax(logits, dim=1).squeeze().tolist()
labels = {
"0": "3D", "1": "Bangumi", "2": "Comic", "3": "Illustration"
}
predictions = {labels[str(i)]: round(probs[i], 3) for i in range(len(probs))}
return predictions
# Create Gradio interface
iface = gr.Interface(
fn=classify_anime_image,
inputs=gr.Image(type="numpy"),
outputs=gr.Label(label="Prediction Scores"),
title="Anime Classification v1.0",
description="Upload an image to classify the anime style category."
)
if __name__ == "__main__":
iface.launch()
```
---
## **Intended Use:**
The **Anime-Classification-v1.0** model is designed to classify anime-related images. Potential use cases include:
- **Content Tagging:** Automatically label anime artwork on platforms or apps.
- **Recommendation Engines:** Enhance personalized anime content suggestions.
- **Digital Art Curation:** Organize galleries by anime style for artists and fans.
- **Dataset Filtering:** Categorize and filter images during dataset creation.