|
--- |
|
license: apache-2.0 |
|
datasets: |
|
- deepghs/anime_classification |
|
language: |
|
- en |
|
base_model: |
|
- google/siglip2-base-patch16-224 |
|
pipeline_tag: image-classification |
|
library_name: transformers |
|
tags: |
|
- Anime |
|
- SigLIP2 |
|
- Image-Detection |
|
- 3D |
|
- Comic |
|
- Illustration |
|
- Bangumi |
|
--- |
|
 |
|
|
|
# **Anime-Classification-v1.0** |
|
|
|
> **Anime-Classification-v1.0** is an image classification vision-language encoder model fine-tuned from **google/siglip2-base-patch16-224** for a single-label classification task. It is designed to classify anime-related images using the **SiglipForImageClassification** architecture. |
|
|
|
```py |
|
Classification Report: |
|
precision recall f1-score support |
|
|
|
3D 0.7979 0.8443 0.8204 4649 |
|
Bangumi 0.8677 0.8728 0.8702 4914 |
|
Comic 0.9716 0.9233 0.9468 5746 |
|
Illustration 0.8204 0.8186 0.8195 6064 |
|
|
|
accuracy 0.8648 21373 |
|
macro avg 0.8644 0.8647 0.8642 21373 |
|
weighted avg 0.8670 0.8648 0.8656 21373 |
|
``` |
|
|
|
 |
|
|
|
--- |
|
|
|
The model categorizes images into 4 anime-related classes: |
|
|
|
``` |
|
Class 0: "3D" |
|
Class 1: "Bangumi" |
|
Class 2: "Comic" |
|
Class 3: "Illustration" |
|
``` |
|
|
|
--- |
|
|
|
## **Install dependencies** |
|
|
|
```python |
|
!pip install -q transformers torch pillow gradio |
|
``` |
|
|
|
--- |
|
|
|
## **Inference Code** |
|
|
|
```python |
|
import gradio as gr |
|
from transformers import AutoImageProcessor, SiglipForImageClassification |
|
from PIL import Image |
|
import torch |
|
|
|
# Load model and processor |
|
model_name = "prithivMLmods/Anime-Classification-v1.0" # New model name |
|
model = SiglipForImageClassification.from_pretrained(model_name) |
|
processor = AutoImageProcessor.from_pretrained(model_name) |
|
|
|
def classify_anime_image(image): |
|
"""Predicts the anime category for an input image.""" |
|
image = Image.fromarray(image).convert("RGB") |
|
inputs = processor(images=image, return_tensors="pt") |
|
|
|
with torch.no_grad(): |
|
outputs = model(**inputs) |
|
logits = outputs.logits |
|
probs = torch.nn.functional.softmax(logits, dim=1).squeeze().tolist() |
|
|
|
labels = { |
|
"0": "3D", "1": "Bangumi", "2": "Comic", "3": "Illustration" |
|
} |
|
predictions = {labels[str(i)]: round(probs[i], 3) for i in range(len(probs))} |
|
|
|
return predictions |
|
|
|
# Create Gradio interface |
|
iface = gr.Interface( |
|
fn=classify_anime_image, |
|
inputs=gr.Image(type="numpy"), |
|
outputs=gr.Label(label="Prediction Scores"), |
|
title="Anime Classification v1.0", |
|
description="Upload an image to classify the anime style category." |
|
) |
|
|
|
if __name__ == "__main__": |
|
iface.launch() |
|
``` |
|
|
|
--- |
|
|
|
## **Intended Use:** |
|
|
|
The **Anime-Classification-v1.0** model is designed to classify anime-related images. Potential use cases include: |
|
|
|
- **Content Tagging:** Automatically label anime artwork on platforms or apps. |
|
- **Recommendation Engines:** Enhance personalized anime content suggestions. |
|
- **Digital Art Curation:** Organize galleries by anime style for artists and fans. |
|
- **Dataset Filtering:** Categorize and filter images during dataset creation. |