|
--- |
|
license: apache-2.0 |
|
datasets: |
|
- competitions/aiornot |
|
language: |
|
- en |
|
library_name: transformers |
|
base_model: |
|
- google/siglip2-base-patch16-224 |
|
pipeline_tag: image-classification |
|
tags: |
|
- SigLIP2 |
|
- AI-vs-Real |
|
- art |
|
--- |
|
|
|
 |
|
|
|
# AIorNot-SigLIP2 |
|
|
|
> AIorNot-SigLIP2 is a vision-language encoder model fine-tuned from google/siglip2-base-patch16-224 for binary image classification. It is trained to detect whether an image is generated by AI or is a real photograph using the SiglipForImageClassification architecture. |
|
|
|
> [!note] |
|
*SigLIP 2: Multilingual Vision-Language Encoders with Improved Semantic Understanding, Localization, and Dense Features* https://arxiv.org/pdf/2502.14786 |
|
|
|
|
|
```py |
|
Classification Report: |
|
precision recall f1-score support |
|
|
|
Real 0.9215 0.8842 0.9025 8288 |
|
AI 0.9100 0.9396 0.9246 10330 |
|
|
|
accuracy 0.9149 18618 |
|
macro avg 0.9158 0.9119 0.9135 18618 |
|
weighted avg 0.9151 0.9149 0.9147 18618 |
|
``` |
|
|
|
 |
|
|
|
--- |
|
|
|
## Label Space: 2 Classes |
|
|
|
The model classifies an image as either: |
|
|
|
``` |
|
Class 0: Real |
|
Class 1: AI |
|
``` |
|
|
|
--- |
|
|
|
## Install Dependencies |
|
|
|
```bash |
|
pip install -q transformers torch pillow gradio hf_xet |
|
``` |
|
|
|
--- |
|
|
|
## Inference Code |
|
|
|
```python |
|
import gradio as gr |
|
from transformers import AutoImageProcessor, SiglipForImageClassification |
|
from PIL import Image |
|
import torch |
|
|
|
# Load model and processor |
|
model_name = "prithivMLmods/AIorNot-SigLIP2" # Replace with your model path |
|
model = SiglipForImageClassification.from_pretrained(model_name) |
|
processor = AutoImageProcessor.from_pretrained(model_name) |
|
|
|
# Label mapping |
|
id2label = { |
|
"0": "Real", |
|
"1": "AI" |
|
} |
|
|
|
def classify_image(image): |
|
image = Image.fromarray(image).convert("RGB") |
|
inputs = processor(images=image, return_tensors="pt") |
|
|
|
with torch.no_grad(): |
|
outputs = model(**inputs) |
|
logits = outputs.logits |
|
probs = torch.nn.functional.softmax(logits, dim=1).squeeze().tolist() |
|
|
|
prediction = { |
|
id2label[str(i)]: round(probs[i], 3) for i in range(len(probs)) |
|
} |
|
|
|
return prediction |
|
|
|
# Gradio Interface |
|
iface = gr.Interface( |
|
fn=classify_image, |
|
inputs=gr.Image(type="numpy"), |
|
outputs=gr.Label(num_top_classes=2, label="AI or Real Detection"), |
|
title="AIorNot-SigLIP2", |
|
description="Upload an image to classify whether it is AI-generated or Real." |
|
) |
|
|
|
if __name__ == "__main__": |
|
iface.launch() |
|
``` |
|
|
|
--- |
|
|
|
## Intended Use |
|
|
|
AIorNot-SigLIP2 is useful in scenarios such as: |
|
|
|
* AI Content Detection – Identify AI-generated images for social platforms or media verification. |
|
* Digital Media Forensics – Assist in distinguishing synthetic from real-world imagery. |
|
* Dataset Filtering – Clean datasets by separating real photographs from AI-synthesized ones. |
|
* Research & Development – Benchmark performance of image authenticity detectors. |