labubu_dataset / README.md
playerzer0x's picture
Model card auto-generated by SimpleTuner
7b9e732 verified
---
license: other
base_model: "black-forest-labs/FLUX.1-Kontext-dev"
tags:
- flux
- flux-diffusers
- text-to-image
- image-to-image
- diffusers
- simpletuner
- not-for-all-audiences
- lora
- template:sd-lora
- standard
pipeline_tag: text-to-image
inference: true
widget:
- text: 'unconditional (blank prompt)'
parameters:
negative_prompt: 'blurry, cropped, ugly'
output:
url: ./assets/image_0_0.png
- text: 'turn this person into a labubu'
parameters:
negative_prompt: 'blurry, cropped, ugly'
output:
url: ./assets/image_1_0.png
- text: 'turn this person into a labubu'
parameters:
negative_prompt: 'blurry, cropped, ugly'
output:
url: ./assets/image_2_0.png
- text: 'turn this person into a labubu'
parameters:
negative_prompt: 'blurry, cropped, ugly'
output:
url: ./assets/image_3_0.png
---
# labubu_dataset
This is a PEFT LoRA derived from [black-forest-labs/FLUX.1-Kontext-dev](https://huggingface.co/black-forest-labs/FLUX.1-Kontext-dev).
The main validation prompt used during training was:
```
a photo of a daisy
```
## Validation settings
- CFG: `2.5`
- CFG Rescale: `0.0`
- Steps: `20`
- Sampler: `FlowMatchEulerDiscreteScheduler`
- Seed: `69`
- Resolution: `1024x1024`
- Skip-layer guidance:
Note: The validation settings are not necessarily the same as the [training settings](#training-settings).
You can find some example images in the following gallery:
<Gallery />
The text encoder **was not** trained.
You may reuse the base model text encoder for inference.
## Training settings
- Training epochs: 374
- Training steps: 1500
- Learning rate: 1e-05
- Learning rate schedule: constant
- Warmup steps: 100
- Max grad value: 2.0
- Effective batch size: 4
- Micro-batch size: 1
- Gradient accumulation steps: 4
- Number of GPUs: 1
- Gradient checkpointing: True
- Prediction type: flow_matching (extra parameters=['flow_schedule_auto_shift', 'shift=0.0', 'flux_guidance_mode=constant', 'flux_guidance_value=1.0', 'flux_lora_target=fal'])
- Optimizer: optimi-lion
- Trainable parameter precision: Pure BF16
- Base model precision: `int8-quanto`
- Caption dropout probability: 0.05%
- LoRA Rank: 16
- LoRA Alpha: 16.0
- LoRA Dropout: 0.1
- LoRA initialisation style: default
## Datasets
### my-edited-images
- Repeats: 0
- Total number of images: 16
- Total number of aspect buckets: 1
- Resolution: 1.048576 megapixels
- Cropped: False
- Crop style: None
- Crop aspect: None
- Used for regularisation data: No
## Inference
```python
import torch
from diffusers import DiffusionPipeline
model_id = 'black-forest-labs/FLUX.1-Kontext-dev'
adapter_id = 'playerzer0x/labubu_dataset'
pipeline = DiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.bfloat16) # loading directly in bf16
pipeline.load_lora_weights(adapter_id)
prompt = "a photo of a daisy"
## Optional: quantise the model to save on vram.
## Note: The model was quantised during training, and so it is recommended to do the same during inference time.
from optimum.quanto import quantize, freeze, qint8
quantize(pipeline.transformer, weights=qint8)
freeze(pipeline.transformer)
pipeline.to('cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu') # the pipeline is already in its target precision level
model_output = pipeline(
prompt=prompt,
num_inference_steps=20,
generator=torch.Generator(device='cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu').manual_seed(69),
width=1024,
height=1024,
guidance_scale=2.5,
).images[0]
model_output.save("output.png", format="PNG")
```