metadata
license: cc
tags:
- image-to-image
REALEDIT: Reddit Edits As a Large-scale Empirical Dataset for Image Transformations
Project page: https://peter-sushko.github.io/RealEdit/
Data: https://huggingface.co/datasets/peter-sushko/RealEdit
This is the model introduce in realedit paper. There are 2 ways to run inference: either via Diffusers or original InstructPix2Pix pipeline.
Option 1: Diffusers library:
Install diffusers, transformers library:
pip install diffusers accelerate safetensors transformers
Download weights adapted for diffusers:
WEIGHTS
import PIL
import requests
import torch
from diffusers import StableDiffusionInstructPix2PixPipeline, EulerAncestralDiscreteScheduler
model_id = "timbrooks/instruct-pix2pix"
pipe = StableDiffusionInstructPix2PixPipeline.from_pretrained(model_id, torch_dtype=torch.float16, safety_checker=None)
CODE TO RUN IT:
pipe.to("cuda")
pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config)
url = "https://raw.githubusercontent.com/timothybrooks/instruct-pix2pix/main/imgs/example.jpg"
def download_image(url):
image = PIL.Image.open(requests.get(url, stream=True).raw)
image = PIL.ImageOps.exif_transpose(image)
image = image.convert("RGB")
return image
image = download_image(url)
prompt = "turn him into cyborg"
images = pipe(prompt, image=image, num_inference_steps=10, image_guidance_scale=1).images
images[0]
Option 2: via InstructPix2Pix pipeline:
Clone the repository and set up the directory structure:
git clone https://github.com/timothybrooks/instruct-pix2pix.git
cd instruct-pix2pix
mkdir checkpoints
Download the fine-tuned checkpoint into the checkpoints
directory:
cd checkpoints
# wget https://huggingface.co/peter-sushko/RealEdit/resolve/main/realedit_model.ckpt
Return to the repo root and follow the InstructPix2Pix installation guide to set up the environment.
Edit a single image
python edit_cli.py \
--input [YOUR_IMG_PATH] \
--output imgs/output.jpg \
--edit "YOUR EDIT INSTRUCTION" \
--ckpt checkpoints/realedit_model.ckpt
Launch the Gradio interface
python edit_app.py --ckpt checkpoints/realedit_model.ckpt
Citation
If you find this checkpoint helpful, please cite:
@misc{sushko2025realeditredditeditslargescale,
title={REALEDIT: Reddit Edits As a Large-scale Empirical Dataset for Image Transformations},
author={Peter Sushko and Ayana Bharadwaj and Zhi Yang Lim and Vasily Ilin and Ben Caffee and Dongping Chen and Mohammadreza Salehi and Cheng-Yu Hsieh and Ranjay Krishna},
year={2025},
eprint={2502.03629},
archivePrefix={arXiv},
primaryClass={cs.CV},
url={https://arxiv.org/abs/2502.03629},
}