|  | --- | 
					
						
						|  | library_name: transformers.js | 
					
						
						|  | license: apache-2.0 | 
					
						
						|  | pipeline_tag: depth-estimation | 
					
						
						|  | --- | 
					
						
						|  |  | 
					
						
						|  | https://huggingface.co/depth-anything/Depth-Anything-V2-Small with ONNX weights to be compatible with Transformers.js. | 
					
						
						|  |  | 
					
						
						|  | ## Usage (Transformers.js) | 
					
						
						|  |  | 
					
						
						|  | If you haven't already, you can install the [Transformers.js](https://huggingface.co/docs/transformers.js) JavaScript library from [NPM](https://www.npmjs.com/package/@xenova/transformers) using: | 
					
						
						|  | ```bash | 
					
						
						|  | npm i @xenova/transformers | 
					
						
						|  | ``` | 
					
						
						|  |  | 
					
						
						|  | **Example:** Depth estimation w/ `onnx-community/depth-anything-v2-small`. | 
					
						
						|  | ```js | 
					
						
						|  | import { pipeline } from '@xenova/transformers'; | 
					
						
						|  |  | 
					
						
						|  | // Create depth estimation pipeline | 
					
						
						|  | const depth_estimator = await pipeline('depth-estimation', 'onnx-community/depth-anything-v2-small'); | 
					
						
						|  |  | 
					
						
						|  | // Predict depth of an image | 
					
						
						|  | const url = 'https://huggingface.co/datasets/Xenova/transformers.js-docs/resolve/main/cats.jpg'; | 
					
						
						|  | const { predicted_depth, depth } = await depth_estimator(url); | 
					
						
						|  | depth.save('depth.png'); | 
					
						
						|  | // { | 
					
						
						|  | //   predicted_depth: Tensor { | 
					
						
						|  | //     dims: [ 518, 686 ], | 
					
						
						|  | //     type: 'float32', | 
					
						
						|  | //     data: Float32Array(147456) [ ... ], | 
					
						
						|  | //     size: 355348 | 
					
						
						|  | //   }, | 
					
						
						|  | //   depth: RawImage { | 
					
						
						|  | //     data: Uint8Array(307200) [ ... ], | 
					
						
						|  | //     width: 640, | 
					
						
						|  | //     height: 480, | 
					
						
						|  | //     channels: 1 | 
					
						
						|  | //   } | 
					
						
						|  | // } | 
					
						
						|  | ``` | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | --- | 
					
						
						|  |  | 
					
						
						|  | Note: Having a separate repo for ONNX weights is intended to be a temporary solution until WebML gains more traction. If you would like to make your models web-ready, we recommend converting to ONNX using [🤗 Optimum](https://huggingface.co/docs/optimum/index) and structuring your repo like this one (with ONNX weights located in a subfolder named `onnx`). |