File size: 28,343 Bytes
424faaa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
---

language:
- en
license: apache-2.0
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:72
- loss:MatryoshkaLoss
- loss:MultipleNegativesRankingLoss
base_model: nomic-ai/modernbert-embed-base
widget:
- source_sentence: What do the packets contain that is essential for their travel?
  sentences:
  - 'Packet switching breaks data into small packets, each containing a destination

    address. These packets travel independently across the network, taking different

    paths if necessary, and reassemble at the destination. This method proved to be

    more efficient and resilient, making it the backbone of modern internet communication.





    The Birth of ARPANET'
  - Early Concepts of Networking
  - . Researchers such as Paul Baran at RAND Corporation and Donald Davies at the
    National Physical Laboratory in the UK independently developed the concept of
    packet switching.
- source_sentence: Which laboratory was Donald Davies associated with when he developed
    packet switching?
  sentences:
  - . Understanding the beginning of the internet requires an exploration of the early
    concepts of networking, the establishment of ARPANET, and the development of key
    protocols that laid the foundation for the modern internet.
  - . Researchers such as Paul Baran at RAND Corporation and Donald Davies at the
    National Physical Laboratory in the UK independently developed the concept of
    packet switching.
  - 'The Beginning of the Internet: A Journey Through Innovation





    Introduction'
- source_sentence: What role did commercial networking play in relation to the internet?
  sentences:
  - Beyond ARPANET, various institutions contributed to the internet’s expansion.
    The emergence of local area networks (LANs), the Domain Name System (DNS), and
    the rise of commercial networking played significant roles in shaping the internet.
  - Beyond ARPANET, various institutions contributed to the internet’s expansion.
    The emergence of local area networks (LANs), the Domain Name System (DNS), and
    the rise of commercial networking played significant roles in shaping the internet.
  - The TCP/IP Protocol SuiteIn 1973, Vinton Cerf and Robert Kahn developed the Transmission
    Control Protocol (TCP) and later, the Internet Protocol (IP), collectively known
    as TCP/IP. This protocol suite allowed networks of different architectures to
    communicate, forming the foundation of the modern internet.
- source_sentence: What type of communication system did the United States government
    seek?
  sentences:
  - Packet Switching and Its RoleTraditional telephone networks relied on circuit-switching,
    which established a direct connection between two parties. However, circuit-switching
    was inefficient for data communication, as it required dedicated lines for each
    connection
  - 'Packet switching breaks data into small packets, each containing a destination

    address. These packets travel independently across the network, taking different

    paths if necessary, and reassemble at the destination. This method proved to be

    more efficient and resilient, making it the backbone of modern internet communication.





    The Birth of ARPANET'
  - The idea of interconnected networks dates back to the 1950s and 1960s, during
    the height of the Cold War. The United States government, concerned with maintaining
    communication in the event of a nuclear attack, sought a decentralized communication
    system that could withstand disruptions. This vision led to research in packet-switching
    technology and distributed networks.
- source_sentence: What are the origins of the internet said to be rooted in?
  sentences:
  - The internet is one of the most transformative technological advancements in human
    history, shaping the way we communicate, work, and interact with the world. However,
    its origins are rooted in decades of research, experimentation, and collaboration
    among scientists, engineers, and visionaries
  - 'The Beginning of the Internet: A Journey Through Innovation





    Introduction'
  - 'The first successful ARPANET message was sent on October 29, 1969, from UCLA

    to SRI. The intended message was “LOGIN,” but the system crashed after transmitting

    only “LO.” This marked the first instance of networked digital communication,

    paving the way for the modern internet.





    Expansion and Development of Protocols'
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
model-index:
- name: Fine-tuned with [QuicKB](https://github.com/ALucek/QuicKB)
  results:
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 768
      type: dim_768
    metrics:
    - type: cosine_accuracy@1
      value: 1.0
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 1.0
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 1.0
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 1.0
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 1.0
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.3333333333333333
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.2
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.1
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 1.0
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 1.0
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 1.0
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 1.0
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 1.0
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 1.0
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 1.0
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 512
      type: dim_512
    metrics:
    - type: cosine_accuracy@1
      value: 1.0
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 1.0
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 1.0
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 1.0
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 1.0
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.3333333333333333
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.2
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.1
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 1.0
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 1.0
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 1.0
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 1.0
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 1.0
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 1.0
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 1.0
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 256
      type: dim_256
    metrics:
    - type: cosine_accuracy@1
      value: 1.0
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 1.0
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 1.0
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 1.0
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 1.0
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.3333333333333333
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.2
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.1
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 1.0
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 1.0
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 1.0
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 1.0
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 1.0
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 1.0
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 1.0
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 128
      type: dim_128
    metrics:
    - type: cosine_accuracy@1
      value: 0.875
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.875
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.875
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 1.0
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.875
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.29166666666666663
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.17500000000000002
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.1
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.875
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.875
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.875
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 1.0
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.9195258983885027
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.8958333333333334
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.8958333333333334
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 64
      type: dim_64
    metrics:
    - type: cosine_accuracy@1
      value: 0.625
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.625
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.875
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 1.0
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.625
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.20833333333333331
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.17500000000000002
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.1
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.625
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.625
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.875
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 1.0
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.7662391001971381
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.6958333333333334
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.6958333333333333
      name: Cosine Map@100
---


# Fine-tuned with [QuicKB](https://github.com/ALucek/QuicKB)

This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [nomic-ai/modernbert-embed-base](https://huggingface.co/nomic-ai/modernbert-embed-base). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

## Model Details

### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [nomic-ai/modernbert-embed-base](https://huggingface.co/nomic-ai/modernbert-embed-base) <!-- at revision d556a88e332558790b210f7bdbe87da2fa94a8d8 -->
- **Maximum Sequence Length:** 1024 tokens
- **Output Dimensionality:** 768 dimensions
- **Similarity Function:** Cosine Similarity
<!-- - **Training Dataset:** Unknown -->
- **Language:** en
- **License:** apache-2.0

### Model Sources

- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)

### Full Model Architecture

```

SentenceTransformer(

  (0): Transformer({'max_seq_length': 1024, 'do_lower_case': False}) with Transformer model: ModernBertModel 

  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})

  (2): Normalize()

)

```

## Usage

### Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

```bash

pip install -U sentence-transformers

```

Then you can load this model and run inference.
```python

from sentence_transformers import SentenceTransformer



# Download from the 🤗 Hub

model = SentenceTransformer("onecd2000/modernbert-embed-test")

# Run inference

sentences = [

    'What are the origins of the internet said to be rooted in?',

    'The internet is one of the most transformative technological advancements in human history, shaping the way we communicate, work, and interact with the world. However, its origins are rooted in decades of research, experimentation, and collaboration among scientists, engineers, and visionaries',

    'The first successful ARPANET message was sent on October 29, 1969, from UCLA to SRI. The intended message was “LOGIN,” but the system crashed after transmitting only “LO.” This marked the first instance of networked digital communication, paving the way for the modern internet.\n\nExpansion and Development of Protocols',

]

embeddings = model.encode(sentences)

print(embeddings.shape)

# [3, 768]



# Get the similarity scores for the embeddings

similarities = model.similarity(embeddings, embeddings)

print(similarities.shape)

# [3, 3]

```

<!--
### Direct Usage (Transformers)

<details><summary>Click to see the direct usage in Transformers</summary>

</details>
-->

<!--
### Downstream Usage (Sentence Transformers)

You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

</details>
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

## Evaluation

### Metrics

#### Information Retrieval

* Datasets: `dim_768`, `dim_512`, `dim_256`, `dim_128` and `dim_64`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | dim_768 | dim_512 | dim_256 | dim_128    | dim_64     |

|:--------------------|:--------|:--------|:--------|:-----------|:-----------|

| cosine_accuracy@1   | 1.0     | 1.0     | 1.0     | 0.875      | 0.625      |
| cosine_accuracy@3   | 1.0     | 1.0     | 1.0     | 0.875      | 0.625      |

| cosine_accuracy@5   | 1.0     | 1.0     | 1.0     | 0.875      | 0.875      |
| cosine_accuracy@10  | 1.0     | 1.0     | 1.0     | 1.0        | 1.0        |

| cosine_precision@1  | 1.0     | 1.0     | 1.0     | 0.875      | 0.625      |
| cosine_precision@3  | 0.3333  | 0.3333  | 0.3333  | 0.2917     | 0.2083     |

| cosine_precision@5  | 0.2     | 0.2     | 0.2     | 0.175      | 0.175      |
| cosine_precision@10 | 0.1     | 0.1     | 0.1     | 0.1        | 0.1        |

| cosine_recall@1     | 1.0     | 1.0     | 1.0     | 0.875      | 0.625      |
| cosine_recall@3     | 1.0     | 1.0     | 1.0     | 0.875      | 0.625      |

| cosine_recall@5     | 1.0     | 1.0     | 1.0     | 0.875      | 0.875      |
| cosine_recall@10    | 1.0     | 1.0     | 1.0     | 1.0        | 1.0        |

| **cosine_ndcg@10**  | **1.0** | **1.0** | **1.0** | **0.9195** | **0.7662** |

| cosine_mrr@10       | 1.0     | 1.0     | 1.0     | 0.8958     | 0.6958     |
| cosine_map@100      | 1.0     | 1.0     | 1.0     | 0.8958     | 0.6958     |



<!--

## Bias, Risks and Limitations



*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*

-->



<!--

### Recommendations



*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*

-->



## Training Details



### Training Dataset



#### Unnamed Dataset



* Size: 72 training samples

* Columns: <code>anchor</code> and <code>positive</code>

* Approximate statistics based on the first 72 samples:

  |         | anchor                                                                           | positive                                                                          |

  |:--------|:---------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|

  | type    | string                                                                           | string                                                                            |

  | details | <ul><li>min: 9 tokens</li><li>mean: 14.6 tokens</li><li>max: 20 tokens</li></ul> | <ul><li>min: 8 tokens</li><li>mean: 57.92 tokens</li><li>max: 89 tokens</li></ul> |

* Samples:

  | anchor                                                                          | positive                                                                                                                                                                                                                                                                                                                                                                                         |

  |:--------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

  | <code>What does the text focus on regarding the Internet?</code>                | <code>The Beginning of the Internet: A Journey Through Innovation<br><br>Introduction</code>                                                                                                                                                                                                                                                                                                     |

  | <code>What was the primary purpose of the first web browser?</code>             | <code>The First Web Browser – A tool for accessing and navigating websites.<br><br>The World Wide Web revolutionized internet usage, making it more accessible and appealing to the general public. By the mid-1990s, web browsers like Netscape Navigator and Microsoft Internet Explorer fueled rapid internet adoption, leading to the digital age we live in today.<br><br>Conclusion</code> |

  | <code>What system contributed to the organization of internet addresses?</code> | <code>Beyond ARPANET, various institutions contributed to the internet’s expansion. The emergence of local area networks (LANs), the Domain Name System (DNS), and the rise of commercial networking played significant roles in shaping the internet.</code>                                                                                                                                    |

* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:

  ```json

  {

      "loss": "MultipleNegativesRankingLoss",

      "matryoshka_dims": [
          768,

          512,

          256,

          128,

          64

      ],

      "matryoshka_weights": [

          1,

          1,

          1,

          1,

          1

      ],

      "n_dims_per_step": -1

  }

  ```


### Training Hyperparameters
#### Non-Default Hyperparameters

- `eval_strategy`: epoch
- `per_device_train_batch_size`: 32
- `gradient_accumulation_steps`: 16
- `learning_rate`: 2e-05
- `num_train_epochs`: 4
- `lr_scheduler_type`: cosine
- `warmup_ratio`: 0.1
- `bf16`: True
- `tf32`: True
- `load_best_model_at_end`: True
- `optim`: adamw_torch_fused
- `batch_sampler`: no_duplicates



#### All Hyperparameters

<details><summary>Click to expand</summary>



- `overwrite_output_dir`: False

- `do_predict`: False
- `eval_strategy`: epoch
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 32
- `per_device_eval_batch_size`: 8
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 16
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 2e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 4
- `max_steps`: -1
- `lr_scheduler_type`: cosine
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: True
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: True
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: True
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}

- `tp_size`: 0
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch_fused
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save

- `hub_private_repo`: None

- `hub_always_push`: False

- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `include_for_metrics`: []
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`: 
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `use_liger_kernel`: False
- `eval_use_gather_object`: False
- `average_tokens_across_devices`: False
- `prompts`: None
- `batch_sampler`: no_duplicates

- `multi_dataset_batch_sampler`: proportional

</details>

### Training Logs
| Epoch   | Step  | dim_768_cosine_ndcg@10 | dim_512_cosine_ndcg@10 | dim_256_cosine_ndcg@10 | dim_128_cosine_ndcg@10 | dim_64_cosine_ndcg@10 |

|:-------:|:-----:|:----------------------:|:----------------------:|:----------------------:|:----------------------:|:---------------------:|

| 1.0     | 1     | 0.8827                 | 0.8827                 | 0.8827                 | 0.7413                 | 0.6383                |

| 2.0     | 2     | 0.9288                 | 0.9539                 | 1.0                    | 0.8289                 | 0.7611                |

| 3.0     | 3     | 1.0                    | 1.0                    | 1.0                    | 0.9167                 | 0.7634                |

| **4.0** | **4** | **1.0**                | **1.0**                | **1.0**                | **0.9195**             | **0.7662**            |



* The bold row denotes the saved checkpoint.



### Framework Versions

- Python: 3.12.9

- Sentence Transformers: 3.4.1

- Transformers: 4.50.0

- PyTorch: 2.6.0+cu126

- Accelerate: 1.3.0

- Datasets: 3.2.0

- Tokenizers: 0.21.1



## Citation



### BibTeX



#### Sentence Transformers

```bibtex

@inproceedings{reimers-2019-sentence-bert,

    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",

    author = "Reimers, Nils and Gurevych, Iryna",

    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",

    month = "11",

    year = "2019",

    publisher = "Association for Computational Linguistics",

    url = "https://arxiv.org/abs/1908.10084",

}

```



#### MatryoshkaLoss

```bibtex

@misc{kusupati2024matryoshka,

    title={Matryoshka Representation Learning},

    author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},

    year={2024},

    eprint={2205.13147},

    archivePrefix={arXiv},

    primaryClass={cs.LG}

}

```



#### MultipleNegativesRankingLoss

```bibtex

@misc{henderson2017efficient,

    title={Efficient Natural Language Response Suggestion for Smart Reply},

    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},

    year={2017},

    eprint={1705.00652},

    archivePrefix={arXiv},

    primaryClass={cs.CL}

}

```



<!--

## Glossary



*Clearly define terms in order to be accessible across audiences.*

-->



<!--

## Model Card Authors



*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*

-->



<!--

## Model Card Contact



*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*

-->