onecd2000 commited on
Commit
424faaa
·
verified ·
1 Parent(s): a8fb4d5

Add new SentenceTransformer model

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,754 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - en
4
+ license: apache-2.0
5
+ tags:
6
+ - sentence-transformers
7
+ - sentence-similarity
8
+ - feature-extraction
9
+ - generated_from_trainer
10
+ - dataset_size:72
11
+ - loss:MatryoshkaLoss
12
+ - loss:MultipleNegativesRankingLoss
13
+ base_model: nomic-ai/modernbert-embed-base
14
+ widget:
15
+ - source_sentence: What do the packets contain that is essential for their travel?
16
+ sentences:
17
+ - 'Packet switching breaks data into small packets, each containing a destination
18
+ address. These packets travel independently across the network, taking different
19
+ paths if necessary, and reassemble at the destination. This method proved to be
20
+ more efficient and resilient, making it the backbone of modern internet communication.
21
+
22
+
23
+ The Birth of ARPANET'
24
+ - Early Concepts of Networking
25
+ - . Researchers such as Paul Baran at RAND Corporation and Donald Davies at the
26
+ National Physical Laboratory in the UK independently developed the concept of
27
+ packet switching.
28
+ - source_sentence: Which laboratory was Donald Davies associated with when he developed
29
+ packet switching?
30
+ sentences:
31
+ - . Understanding the beginning of the internet requires an exploration of the early
32
+ concepts of networking, the establishment of ARPANET, and the development of key
33
+ protocols that laid the foundation for the modern internet.
34
+ - . Researchers such as Paul Baran at RAND Corporation and Donald Davies at the
35
+ National Physical Laboratory in the UK independently developed the concept of
36
+ packet switching.
37
+ - 'The Beginning of the Internet: A Journey Through Innovation
38
+
39
+
40
+ Introduction'
41
+ - source_sentence: What role did commercial networking play in relation to the internet?
42
+ sentences:
43
+ - Beyond ARPANET, various institutions contributed to the internet’s expansion.
44
+ The emergence of local area networks (LANs), the Domain Name System (DNS), and
45
+ the rise of commercial networking played significant roles in shaping the internet.
46
+ - Beyond ARPANET, various institutions contributed to the internet’s expansion.
47
+ The emergence of local area networks (LANs), the Domain Name System (DNS), and
48
+ the rise of commercial networking played significant roles in shaping the internet.
49
+ - The TCP/IP Protocol SuiteIn 1973, Vinton Cerf and Robert Kahn developed the Transmission
50
+ Control Protocol (TCP) and later, the Internet Protocol (IP), collectively known
51
+ as TCP/IP. This protocol suite allowed networks of different architectures to
52
+ communicate, forming the foundation of the modern internet.
53
+ - source_sentence: What type of communication system did the United States government
54
+ seek?
55
+ sentences:
56
+ - Packet Switching and Its RoleTraditional telephone networks relied on circuit-switching,
57
+ which established a direct connection between two parties. However, circuit-switching
58
+ was inefficient for data communication, as it required dedicated lines for each
59
+ connection
60
+ - 'Packet switching breaks data into small packets, each containing a destination
61
+ address. These packets travel independently across the network, taking different
62
+ paths if necessary, and reassemble at the destination. This method proved to be
63
+ more efficient and resilient, making it the backbone of modern internet communication.
64
+
65
+
66
+ The Birth of ARPANET'
67
+ - The idea of interconnected networks dates back to the 1950s and 1960s, during
68
+ the height of the Cold War. The United States government, concerned with maintaining
69
+ communication in the event of a nuclear attack, sought a decentralized communication
70
+ system that could withstand disruptions. This vision led to research in packet-switching
71
+ technology and distributed networks.
72
+ - source_sentence: What are the origins of the internet said to be rooted in?
73
+ sentences:
74
+ - The internet is one of the most transformative technological advancements in human
75
+ history, shaping the way we communicate, work, and interact with the world. However,
76
+ its origins are rooted in decades of research, experimentation, and collaboration
77
+ among scientists, engineers, and visionaries
78
+ - 'The Beginning of the Internet: A Journey Through Innovation
79
+
80
+
81
+ Introduction'
82
+ - 'The first successful ARPANET message was sent on October 29, 1969, from UCLA
83
+ to SRI. The intended message was “LOGIN,” but the system crashed after transmitting
84
+ only “LO.” This marked the first instance of networked digital communication,
85
+ paving the way for the modern internet.
86
+
87
+
88
+ Expansion and Development of Protocols'
89
+ pipeline_tag: sentence-similarity
90
+ library_name: sentence-transformers
91
+ metrics:
92
+ - cosine_accuracy@1
93
+ - cosine_accuracy@3
94
+ - cosine_accuracy@5
95
+ - cosine_accuracy@10
96
+ - cosine_precision@1
97
+ - cosine_precision@3
98
+ - cosine_precision@5
99
+ - cosine_precision@10
100
+ - cosine_recall@1
101
+ - cosine_recall@3
102
+ - cosine_recall@5
103
+ - cosine_recall@10
104
+ - cosine_ndcg@10
105
+ - cosine_mrr@10
106
+ - cosine_map@100
107
+ model-index:
108
+ - name: Fine-tuned with [QuicKB](https://github.com/ALucek/QuicKB)
109
+ results:
110
+ - task:
111
+ type: information-retrieval
112
+ name: Information Retrieval
113
+ dataset:
114
+ name: dim 768
115
+ type: dim_768
116
+ metrics:
117
+ - type: cosine_accuracy@1
118
+ value: 1.0
119
+ name: Cosine Accuracy@1
120
+ - type: cosine_accuracy@3
121
+ value: 1.0
122
+ name: Cosine Accuracy@3
123
+ - type: cosine_accuracy@5
124
+ value: 1.0
125
+ name: Cosine Accuracy@5
126
+ - type: cosine_accuracy@10
127
+ value: 1.0
128
+ name: Cosine Accuracy@10
129
+ - type: cosine_precision@1
130
+ value: 1.0
131
+ name: Cosine Precision@1
132
+ - type: cosine_precision@3
133
+ value: 0.3333333333333333
134
+ name: Cosine Precision@3
135
+ - type: cosine_precision@5
136
+ value: 0.2
137
+ name: Cosine Precision@5
138
+ - type: cosine_precision@10
139
+ value: 0.1
140
+ name: Cosine Precision@10
141
+ - type: cosine_recall@1
142
+ value: 1.0
143
+ name: Cosine Recall@1
144
+ - type: cosine_recall@3
145
+ value: 1.0
146
+ name: Cosine Recall@3
147
+ - type: cosine_recall@5
148
+ value: 1.0
149
+ name: Cosine Recall@5
150
+ - type: cosine_recall@10
151
+ value: 1.0
152
+ name: Cosine Recall@10
153
+ - type: cosine_ndcg@10
154
+ value: 1.0
155
+ name: Cosine Ndcg@10
156
+ - type: cosine_mrr@10
157
+ value: 1.0
158
+ name: Cosine Mrr@10
159
+ - type: cosine_map@100
160
+ value: 1.0
161
+ name: Cosine Map@100
162
+ - task:
163
+ type: information-retrieval
164
+ name: Information Retrieval
165
+ dataset:
166
+ name: dim 512
167
+ type: dim_512
168
+ metrics:
169
+ - type: cosine_accuracy@1
170
+ value: 1.0
171
+ name: Cosine Accuracy@1
172
+ - type: cosine_accuracy@3
173
+ value: 1.0
174
+ name: Cosine Accuracy@3
175
+ - type: cosine_accuracy@5
176
+ value: 1.0
177
+ name: Cosine Accuracy@5
178
+ - type: cosine_accuracy@10
179
+ value: 1.0
180
+ name: Cosine Accuracy@10
181
+ - type: cosine_precision@1
182
+ value: 1.0
183
+ name: Cosine Precision@1
184
+ - type: cosine_precision@3
185
+ value: 0.3333333333333333
186
+ name: Cosine Precision@3
187
+ - type: cosine_precision@5
188
+ value: 0.2
189
+ name: Cosine Precision@5
190
+ - type: cosine_precision@10
191
+ value: 0.1
192
+ name: Cosine Precision@10
193
+ - type: cosine_recall@1
194
+ value: 1.0
195
+ name: Cosine Recall@1
196
+ - type: cosine_recall@3
197
+ value: 1.0
198
+ name: Cosine Recall@3
199
+ - type: cosine_recall@5
200
+ value: 1.0
201
+ name: Cosine Recall@5
202
+ - type: cosine_recall@10
203
+ value: 1.0
204
+ name: Cosine Recall@10
205
+ - type: cosine_ndcg@10
206
+ value: 1.0
207
+ name: Cosine Ndcg@10
208
+ - type: cosine_mrr@10
209
+ value: 1.0
210
+ name: Cosine Mrr@10
211
+ - type: cosine_map@100
212
+ value: 1.0
213
+ name: Cosine Map@100
214
+ - task:
215
+ type: information-retrieval
216
+ name: Information Retrieval
217
+ dataset:
218
+ name: dim 256
219
+ type: dim_256
220
+ metrics:
221
+ - type: cosine_accuracy@1
222
+ value: 1.0
223
+ name: Cosine Accuracy@1
224
+ - type: cosine_accuracy@3
225
+ value: 1.0
226
+ name: Cosine Accuracy@3
227
+ - type: cosine_accuracy@5
228
+ value: 1.0
229
+ name: Cosine Accuracy@5
230
+ - type: cosine_accuracy@10
231
+ value: 1.0
232
+ name: Cosine Accuracy@10
233
+ - type: cosine_precision@1
234
+ value: 1.0
235
+ name: Cosine Precision@1
236
+ - type: cosine_precision@3
237
+ value: 0.3333333333333333
238
+ name: Cosine Precision@3
239
+ - type: cosine_precision@5
240
+ value: 0.2
241
+ name: Cosine Precision@5
242
+ - type: cosine_precision@10
243
+ value: 0.1
244
+ name: Cosine Precision@10
245
+ - type: cosine_recall@1
246
+ value: 1.0
247
+ name: Cosine Recall@1
248
+ - type: cosine_recall@3
249
+ value: 1.0
250
+ name: Cosine Recall@3
251
+ - type: cosine_recall@5
252
+ value: 1.0
253
+ name: Cosine Recall@5
254
+ - type: cosine_recall@10
255
+ value: 1.0
256
+ name: Cosine Recall@10
257
+ - type: cosine_ndcg@10
258
+ value: 1.0
259
+ name: Cosine Ndcg@10
260
+ - type: cosine_mrr@10
261
+ value: 1.0
262
+ name: Cosine Mrr@10
263
+ - type: cosine_map@100
264
+ value: 1.0
265
+ name: Cosine Map@100
266
+ - task:
267
+ type: information-retrieval
268
+ name: Information Retrieval
269
+ dataset:
270
+ name: dim 128
271
+ type: dim_128
272
+ metrics:
273
+ - type: cosine_accuracy@1
274
+ value: 0.875
275
+ name: Cosine Accuracy@1
276
+ - type: cosine_accuracy@3
277
+ value: 0.875
278
+ name: Cosine Accuracy@3
279
+ - type: cosine_accuracy@5
280
+ value: 0.875
281
+ name: Cosine Accuracy@5
282
+ - type: cosine_accuracy@10
283
+ value: 1.0
284
+ name: Cosine Accuracy@10
285
+ - type: cosine_precision@1
286
+ value: 0.875
287
+ name: Cosine Precision@1
288
+ - type: cosine_precision@3
289
+ value: 0.29166666666666663
290
+ name: Cosine Precision@3
291
+ - type: cosine_precision@5
292
+ value: 0.17500000000000002
293
+ name: Cosine Precision@5
294
+ - type: cosine_precision@10
295
+ value: 0.1
296
+ name: Cosine Precision@10
297
+ - type: cosine_recall@1
298
+ value: 0.875
299
+ name: Cosine Recall@1
300
+ - type: cosine_recall@3
301
+ value: 0.875
302
+ name: Cosine Recall@3
303
+ - type: cosine_recall@5
304
+ value: 0.875
305
+ name: Cosine Recall@5
306
+ - type: cosine_recall@10
307
+ value: 1.0
308
+ name: Cosine Recall@10
309
+ - type: cosine_ndcg@10
310
+ value: 0.9195258983885027
311
+ name: Cosine Ndcg@10
312
+ - type: cosine_mrr@10
313
+ value: 0.8958333333333334
314
+ name: Cosine Mrr@10
315
+ - type: cosine_map@100
316
+ value: 0.8958333333333334
317
+ name: Cosine Map@100
318
+ - task:
319
+ type: information-retrieval
320
+ name: Information Retrieval
321
+ dataset:
322
+ name: dim 64
323
+ type: dim_64
324
+ metrics:
325
+ - type: cosine_accuracy@1
326
+ value: 0.625
327
+ name: Cosine Accuracy@1
328
+ - type: cosine_accuracy@3
329
+ value: 0.625
330
+ name: Cosine Accuracy@3
331
+ - type: cosine_accuracy@5
332
+ value: 0.875
333
+ name: Cosine Accuracy@5
334
+ - type: cosine_accuracy@10
335
+ value: 1.0
336
+ name: Cosine Accuracy@10
337
+ - type: cosine_precision@1
338
+ value: 0.625
339
+ name: Cosine Precision@1
340
+ - type: cosine_precision@3
341
+ value: 0.20833333333333331
342
+ name: Cosine Precision@3
343
+ - type: cosine_precision@5
344
+ value: 0.17500000000000002
345
+ name: Cosine Precision@5
346
+ - type: cosine_precision@10
347
+ value: 0.1
348
+ name: Cosine Precision@10
349
+ - type: cosine_recall@1
350
+ value: 0.625
351
+ name: Cosine Recall@1
352
+ - type: cosine_recall@3
353
+ value: 0.625
354
+ name: Cosine Recall@3
355
+ - type: cosine_recall@5
356
+ value: 0.875
357
+ name: Cosine Recall@5
358
+ - type: cosine_recall@10
359
+ value: 1.0
360
+ name: Cosine Recall@10
361
+ - type: cosine_ndcg@10
362
+ value: 0.7662391001971381
363
+ name: Cosine Ndcg@10
364
+ - type: cosine_mrr@10
365
+ value: 0.6958333333333334
366
+ name: Cosine Mrr@10
367
+ - type: cosine_map@100
368
+ value: 0.6958333333333333
369
+ name: Cosine Map@100
370
+ ---
371
+
372
+ # Fine-tuned with [QuicKB](https://github.com/ALucek/QuicKB)
373
+
374
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [nomic-ai/modernbert-embed-base](https://huggingface.co/nomic-ai/modernbert-embed-base). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
375
+
376
+ ## Model Details
377
+
378
+ ### Model Description
379
+ - **Model Type:** Sentence Transformer
380
+ - **Base model:** [nomic-ai/modernbert-embed-base](https://huggingface.co/nomic-ai/modernbert-embed-base) <!-- at revision d556a88e332558790b210f7bdbe87da2fa94a8d8 -->
381
+ - **Maximum Sequence Length:** 1024 tokens
382
+ - **Output Dimensionality:** 768 dimensions
383
+ - **Similarity Function:** Cosine Similarity
384
+ <!-- - **Training Dataset:** Unknown -->
385
+ - **Language:** en
386
+ - **License:** apache-2.0
387
+
388
+ ### Model Sources
389
+
390
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
391
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
392
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
393
+
394
+ ### Full Model Architecture
395
+
396
+ ```
397
+ SentenceTransformer(
398
+ (0): Transformer({'max_seq_length': 1024, 'do_lower_case': False}) with Transformer model: ModernBertModel
399
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
400
+ (2): Normalize()
401
+ )
402
+ ```
403
+
404
+ ## Usage
405
+
406
+ ### Direct Usage (Sentence Transformers)
407
+
408
+ First install the Sentence Transformers library:
409
+
410
+ ```bash
411
+ pip install -U sentence-transformers
412
+ ```
413
+
414
+ Then you can load this model and run inference.
415
+ ```python
416
+ from sentence_transformers import SentenceTransformer
417
+
418
+ # Download from the 🤗 Hub
419
+ model = SentenceTransformer("onecd2000/modernbert-embed-test")
420
+ # Run inference
421
+ sentences = [
422
+ 'What are the origins of the internet said to be rooted in?',
423
+ 'The internet is one of the most transformative technological advancements in human history, shaping the way we communicate, work, and interact with the world. However, its origins are rooted in decades of research, experimentation, and collaboration among scientists, engineers, and visionaries',
424
+ 'The first successful ARPANET message was sent on October 29, 1969, from UCLA to SRI. The intended message was “LOGIN,” but the system crashed after transmitting only “LO.” This marked the first instance of networked digital communication, paving the way for the modern internet.\n\nExpansion and Development of Protocols',
425
+ ]
426
+ embeddings = model.encode(sentences)
427
+ print(embeddings.shape)
428
+ # [3, 768]
429
+
430
+ # Get the similarity scores for the embeddings
431
+ similarities = model.similarity(embeddings, embeddings)
432
+ print(similarities.shape)
433
+ # [3, 3]
434
+ ```
435
+
436
+ <!--
437
+ ### Direct Usage (Transformers)
438
+
439
+ <details><summary>Click to see the direct usage in Transformers</summary>
440
+
441
+ </details>
442
+ -->
443
+
444
+ <!--
445
+ ### Downstream Usage (Sentence Transformers)
446
+
447
+ You can finetune this model on your own dataset.
448
+
449
+ <details><summary>Click to expand</summary>
450
+
451
+ </details>
452
+ -->
453
+
454
+ <!--
455
+ ### Out-of-Scope Use
456
+
457
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
458
+ -->
459
+
460
+ ## Evaluation
461
+
462
+ ### Metrics
463
+
464
+ #### Information Retrieval
465
+
466
+ * Datasets: `dim_768`, `dim_512`, `dim_256`, `dim_128` and `dim_64`
467
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
468
+
469
+ | Metric | dim_768 | dim_512 | dim_256 | dim_128 | dim_64 |
470
+ |:--------------------|:--------|:--------|:--------|:-----------|:-----------|
471
+ | cosine_accuracy@1 | 1.0 | 1.0 | 1.0 | 0.875 | 0.625 |
472
+ | cosine_accuracy@3 | 1.0 | 1.0 | 1.0 | 0.875 | 0.625 |
473
+ | cosine_accuracy@5 | 1.0 | 1.0 | 1.0 | 0.875 | 0.875 |
474
+ | cosine_accuracy@10 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 |
475
+ | cosine_precision@1 | 1.0 | 1.0 | 1.0 | 0.875 | 0.625 |
476
+ | cosine_precision@3 | 0.3333 | 0.3333 | 0.3333 | 0.2917 | 0.2083 |
477
+ | cosine_precision@5 | 0.2 | 0.2 | 0.2 | 0.175 | 0.175 |
478
+ | cosine_precision@10 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 |
479
+ | cosine_recall@1 | 1.0 | 1.0 | 1.0 | 0.875 | 0.625 |
480
+ | cosine_recall@3 | 1.0 | 1.0 | 1.0 | 0.875 | 0.625 |
481
+ | cosine_recall@5 | 1.0 | 1.0 | 1.0 | 0.875 | 0.875 |
482
+ | cosine_recall@10 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 |
483
+ | **cosine_ndcg@10** | **1.0** | **1.0** | **1.0** | **0.9195** | **0.7662** |
484
+ | cosine_mrr@10 | 1.0 | 1.0 | 1.0 | 0.8958 | 0.6958 |
485
+ | cosine_map@100 | 1.0 | 1.0 | 1.0 | 0.8958 | 0.6958 |
486
+
487
+ <!--
488
+ ## Bias, Risks and Limitations
489
+
490
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
491
+ -->
492
+
493
+ <!--
494
+ ### Recommendations
495
+
496
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
497
+ -->
498
+
499
+ ## Training Details
500
+
501
+ ### Training Dataset
502
+
503
+ #### Unnamed Dataset
504
+
505
+ * Size: 72 training samples
506
+ * Columns: <code>anchor</code> and <code>positive</code>
507
+ * Approximate statistics based on the first 72 samples:
508
+ | | anchor | positive |
509
+ |:--------|:---------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
510
+ | type | string | string |
511
+ | details | <ul><li>min: 9 tokens</li><li>mean: 14.6 tokens</li><li>max: 20 tokens</li></ul> | <ul><li>min: 8 tokens</li><li>mean: 57.92 tokens</li><li>max: 89 tokens</li></ul> |
512
+ * Samples:
513
+ | anchor | positive |
514
+ |:--------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
515
+ | <code>What does the text focus on regarding the Internet?</code> | <code>The Beginning of the Internet: A Journey Through Innovation<br><br>Introduction</code> |
516
+ | <code>What was the primary purpose of the first web browser?</code> | <code>The First Web Browser – A tool for accessing and navigating websites.<br><br>The World Wide Web revolutionized internet usage, making it more accessible and appealing to the general public. By the mid-1990s, web browsers like Netscape Navigator and Microsoft Internet Explorer fueled rapid internet adoption, leading to the digital age we live in today.<br><br>Conclusion</code> |
517
+ | <code>What system contributed to the organization of internet addresses?</code> | <code>Beyond ARPANET, various institutions contributed to the internet’s expansion. The emergence of local area networks (LANs), the Domain Name System (DNS), and the rise of commercial networking played significant roles in shaping the internet.</code> |
518
+ * Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
519
+ ```json
520
+ {
521
+ "loss": "MultipleNegativesRankingLoss",
522
+ "matryoshka_dims": [
523
+ 768,
524
+ 512,
525
+ 256,
526
+ 128,
527
+ 64
528
+ ],
529
+ "matryoshka_weights": [
530
+ 1,
531
+ 1,
532
+ 1,
533
+ 1,
534
+ 1
535
+ ],
536
+ "n_dims_per_step": -1
537
+ }
538
+ ```
539
+
540
+ ### Training Hyperparameters
541
+ #### Non-Default Hyperparameters
542
+
543
+ - `eval_strategy`: epoch
544
+ - `per_device_train_batch_size`: 32
545
+ - `gradient_accumulation_steps`: 16
546
+ - `learning_rate`: 2e-05
547
+ - `num_train_epochs`: 4
548
+ - `lr_scheduler_type`: cosine
549
+ - `warmup_ratio`: 0.1
550
+ - `bf16`: True
551
+ - `tf32`: True
552
+ - `load_best_model_at_end`: True
553
+ - `optim`: adamw_torch_fused
554
+ - `batch_sampler`: no_duplicates
555
+
556
+ #### All Hyperparameters
557
+ <details><summary>Click to expand</summary>
558
+
559
+ - `overwrite_output_dir`: False
560
+ - `do_predict`: False
561
+ - `eval_strategy`: epoch
562
+ - `prediction_loss_only`: True
563
+ - `per_device_train_batch_size`: 32
564
+ - `per_device_eval_batch_size`: 8
565
+ - `per_gpu_train_batch_size`: None
566
+ - `per_gpu_eval_batch_size`: None
567
+ - `gradient_accumulation_steps`: 16
568
+ - `eval_accumulation_steps`: None
569
+ - `torch_empty_cache_steps`: None
570
+ - `learning_rate`: 2e-05
571
+ - `weight_decay`: 0.0
572
+ - `adam_beta1`: 0.9
573
+ - `adam_beta2`: 0.999
574
+ - `adam_epsilon`: 1e-08
575
+ - `max_grad_norm`: 1.0
576
+ - `num_train_epochs`: 4
577
+ - `max_steps`: -1
578
+ - `lr_scheduler_type`: cosine
579
+ - `lr_scheduler_kwargs`: {}
580
+ - `warmup_ratio`: 0.1
581
+ - `warmup_steps`: 0
582
+ - `log_level`: passive
583
+ - `log_level_replica`: warning
584
+ - `log_on_each_node`: True
585
+ - `logging_nan_inf_filter`: True
586
+ - `save_safetensors`: True
587
+ - `save_on_each_node`: False
588
+ - `save_only_model`: False
589
+ - `restore_callback_states_from_checkpoint`: False
590
+ - `no_cuda`: False
591
+ - `use_cpu`: False
592
+ - `use_mps_device`: False
593
+ - `seed`: 42
594
+ - `data_seed`: None
595
+ - `jit_mode_eval`: False
596
+ - `use_ipex`: False
597
+ - `bf16`: True
598
+ - `fp16`: False
599
+ - `fp16_opt_level`: O1
600
+ - `half_precision_backend`: auto
601
+ - `bf16_full_eval`: False
602
+ - `fp16_full_eval`: False
603
+ - `tf32`: True
604
+ - `local_rank`: 0
605
+ - `ddp_backend`: None
606
+ - `tpu_num_cores`: None
607
+ - `tpu_metrics_debug`: False
608
+ - `debug`: []
609
+ - `dataloader_drop_last`: False
610
+ - `dataloader_num_workers`: 0
611
+ - `dataloader_prefetch_factor`: None
612
+ - `past_index`: -1
613
+ - `disable_tqdm`: False
614
+ - `remove_unused_columns`: True
615
+ - `label_names`: None
616
+ - `load_best_model_at_end`: True
617
+ - `ignore_data_skip`: False
618
+ - `fsdp`: []
619
+ - `fsdp_min_num_params`: 0
620
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
621
+ - `tp_size`: 0
622
+ - `fsdp_transformer_layer_cls_to_wrap`: None
623
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
624
+ - `deepspeed`: None
625
+ - `label_smoothing_factor`: 0.0
626
+ - `optim`: adamw_torch_fused
627
+ - `optim_args`: None
628
+ - `adafactor`: False
629
+ - `group_by_length`: False
630
+ - `length_column_name`: length
631
+ - `ddp_find_unused_parameters`: None
632
+ - `ddp_bucket_cap_mb`: None
633
+ - `ddp_broadcast_buffers`: False
634
+ - `dataloader_pin_memory`: True
635
+ - `dataloader_persistent_workers`: False
636
+ - `skip_memory_metrics`: True
637
+ - `use_legacy_prediction_loop`: False
638
+ - `push_to_hub`: False
639
+ - `resume_from_checkpoint`: None
640
+ - `hub_model_id`: None
641
+ - `hub_strategy`: every_save
642
+ - `hub_private_repo`: None
643
+ - `hub_always_push`: False
644
+ - `gradient_checkpointing`: False
645
+ - `gradient_checkpointing_kwargs`: None
646
+ - `include_inputs_for_metrics`: False
647
+ - `include_for_metrics`: []
648
+ - `eval_do_concat_batches`: True
649
+ - `fp16_backend`: auto
650
+ - `push_to_hub_model_id`: None
651
+ - `push_to_hub_organization`: None
652
+ - `mp_parameters`:
653
+ - `auto_find_batch_size`: False
654
+ - `full_determinism`: False
655
+ - `torchdynamo`: None
656
+ - `ray_scope`: last
657
+ - `ddp_timeout`: 1800
658
+ - `torch_compile`: False
659
+ - `torch_compile_backend`: None
660
+ - `torch_compile_mode`: None
661
+ - `dispatch_batches`: None
662
+ - `split_batches`: None
663
+ - `include_tokens_per_second`: False
664
+ - `include_num_input_tokens_seen`: False
665
+ - `neftune_noise_alpha`: None
666
+ - `optim_target_modules`: None
667
+ - `batch_eval_metrics`: False
668
+ - `eval_on_start`: False
669
+ - `use_liger_kernel`: False
670
+ - `eval_use_gather_object`: False
671
+ - `average_tokens_across_devices`: False
672
+ - `prompts`: None
673
+ - `batch_sampler`: no_duplicates
674
+ - `multi_dataset_batch_sampler`: proportional
675
+
676
+ </details>
677
+
678
+ ### Training Logs
679
+ | Epoch | Step | dim_768_cosine_ndcg@10 | dim_512_cosine_ndcg@10 | dim_256_cosine_ndcg@10 | dim_128_cosine_ndcg@10 | dim_64_cosine_ndcg@10 |
680
+ |:-------:|:-----:|:----------------------:|:----------------------:|:----------------------:|:----------------------:|:---------------------:|
681
+ | 1.0 | 1 | 0.8827 | 0.8827 | 0.8827 | 0.7413 | 0.6383 |
682
+ | 2.0 | 2 | 0.9288 | 0.9539 | 1.0 | 0.8289 | 0.7611 |
683
+ | 3.0 | 3 | 1.0 | 1.0 | 1.0 | 0.9167 | 0.7634 |
684
+ | **4.0** | **4** | **1.0** | **1.0** | **1.0** | **0.9195** | **0.7662** |
685
+
686
+ * The bold row denotes the saved checkpoint.
687
+
688
+ ### Framework Versions
689
+ - Python: 3.12.9
690
+ - Sentence Transformers: 3.4.1
691
+ - Transformers: 4.50.0
692
+ - PyTorch: 2.6.0+cu126
693
+ - Accelerate: 1.3.0
694
+ - Datasets: 3.2.0
695
+ - Tokenizers: 0.21.1
696
+
697
+ ## Citation
698
+
699
+ ### BibTeX
700
+
701
+ #### Sentence Transformers
702
+ ```bibtex
703
+ @inproceedings{reimers-2019-sentence-bert,
704
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
705
+ author = "Reimers, Nils and Gurevych, Iryna",
706
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
707
+ month = "11",
708
+ year = "2019",
709
+ publisher = "Association for Computational Linguistics",
710
+ url = "https://arxiv.org/abs/1908.10084",
711
+ }
712
+ ```
713
+
714
+ #### MatryoshkaLoss
715
+ ```bibtex
716
+ @misc{kusupati2024matryoshka,
717
+ title={Matryoshka Representation Learning},
718
+ author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
719
+ year={2024},
720
+ eprint={2205.13147},
721
+ archivePrefix={arXiv},
722
+ primaryClass={cs.LG}
723
+ }
724
+ ```
725
+
726
+ #### MultipleNegativesRankingLoss
727
+ ```bibtex
728
+ @misc{henderson2017efficient,
729
+ title={Efficient Natural Language Response Suggestion for Smart Reply},
730
+ author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
731
+ year={2017},
732
+ eprint={1705.00652},
733
+ archivePrefix={arXiv},
734
+ primaryClass={cs.CL}
735
+ }
736
+ ```
737
+
738
+ <!--
739
+ ## Glossary
740
+
741
+ *Clearly define terms in order to be accessible across audiences.*
742
+ -->
743
+
744
+ <!--
745
+ ## Model Card Authors
746
+
747
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
748
+ -->
749
+
750
+ <!--
751
+ ## Model Card Contact
752
+
753
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
754
+ -->
config.json ADDED
@@ -0,0 +1,46 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "ModernBertModel"
4
+ ],
5
+ "attention_bias": false,
6
+ "attention_dropout": 0.0,
7
+ "bos_token_id": 50281,
8
+ "classifier_activation": "gelu",
9
+ "classifier_bias": false,
10
+ "classifier_dropout": 0.0,
11
+ "classifier_pooling": "mean",
12
+ "cls_token_id": 50281,
13
+ "decoder_bias": true,
14
+ "deterministic_flash_attn": false,
15
+ "embedding_dropout": 0.0,
16
+ "eos_token_id": 50282,
17
+ "global_attn_every_n_layers": 3,
18
+ "global_rope_theta": 160000.0,
19
+ "gradient_checkpointing": false,
20
+ "hidden_activation": "gelu",
21
+ "hidden_size": 768,
22
+ "initializer_cutoff_factor": 2.0,
23
+ "initializer_range": 0.02,
24
+ "intermediate_size": 1152,
25
+ "layer_norm_eps": 1e-05,
26
+ "local_attention": 128,
27
+ "local_rope_theta": 10000.0,
28
+ "max_position_embeddings": 8192,
29
+ "mlp_bias": false,
30
+ "mlp_dropout": 0.0,
31
+ "model_type": "modernbert",
32
+ "norm_bias": false,
33
+ "norm_eps": 1e-05,
34
+ "num_attention_heads": 12,
35
+ "num_hidden_layers": 22,
36
+ "pad_token_id": 50283,
37
+ "position_embedding_type": "absolute",
38
+ "reference_compile": false,
39
+ "repad_logits_with_grad": false,
40
+ "sep_token_id": 50282,
41
+ "sparse_pred_ignore_index": -100,
42
+ "sparse_prediction": false,
43
+ "torch_dtype": "float32",
44
+ "transformers_version": "4.50.0",
45
+ "vocab_size": 50368
46
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.4.1",
4
+ "transformers": "4.50.0",
5
+ "pytorch": "2.6.0+cu126"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": "cosine"
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:60bc9f13367322bd0a0f3ea9ea9223c186a372b5deaad1bf3a05f7ee5eb60f56
3
+ size 596070136
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 1024,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": true,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,945 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "|||IP_ADDRESS|||",
5
+ "lstrip": false,
6
+ "normalized": true,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": false
10
+ },
11
+ "1": {
12
+ "content": "<|padding|>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "50254": {
20
+ "content": " ",
21
+ "lstrip": false,
22
+ "normalized": true,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": false
26
+ },
27
+ "50255": {
28
+ "content": " ",
29
+ "lstrip": false,
30
+ "normalized": true,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": false
34
+ },
35
+ "50256": {
36
+ "content": " ",
37
+ "lstrip": false,
38
+ "normalized": true,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": false
42
+ },
43
+ "50257": {
44
+ "content": " ",
45
+ "lstrip": false,
46
+ "normalized": true,
47
+ "rstrip": false,
48
+ "single_word": false,
49
+ "special": false
50
+ },
51
+ "50258": {
52
+ "content": " ",
53
+ "lstrip": false,
54
+ "normalized": true,
55
+ "rstrip": false,
56
+ "single_word": false,
57
+ "special": false
58
+ },
59
+ "50259": {
60
+ "content": " ",
61
+ "lstrip": false,
62
+ "normalized": true,
63
+ "rstrip": false,
64
+ "single_word": false,
65
+ "special": false
66
+ },
67
+ "50260": {
68
+ "content": " ",
69
+ "lstrip": false,
70
+ "normalized": true,
71
+ "rstrip": false,
72
+ "single_word": false,
73
+ "special": false
74
+ },
75
+ "50261": {
76
+ "content": " ",
77
+ "lstrip": false,
78
+ "normalized": true,
79
+ "rstrip": false,
80
+ "single_word": false,
81
+ "special": false
82
+ },
83
+ "50262": {
84
+ "content": " ",
85
+ "lstrip": false,
86
+ "normalized": true,
87
+ "rstrip": false,
88
+ "single_word": false,
89
+ "special": false
90
+ },
91
+ "50263": {
92
+ "content": " ",
93
+ "lstrip": false,
94
+ "normalized": true,
95
+ "rstrip": false,
96
+ "single_word": false,
97
+ "special": false
98
+ },
99
+ "50264": {
100
+ "content": " ",
101
+ "lstrip": false,
102
+ "normalized": true,
103
+ "rstrip": false,
104
+ "single_word": false,
105
+ "special": false
106
+ },
107
+ "50265": {
108
+ "content": " ",
109
+ "lstrip": false,
110
+ "normalized": true,
111
+ "rstrip": false,
112
+ "single_word": false,
113
+ "special": false
114
+ },
115
+ "50266": {
116
+ "content": " ",
117
+ "lstrip": false,
118
+ "normalized": true,
119
+ "rstrip": false,
120
+ "single_word": false,
121
+ "special": false
122
+ },
123
+ "50267": {
124
+ "content": " ",
125
+ "lstrip": false,
126
+ "normalized": true,
127
+ "rstrip": false,
128
+ "single_word": false,
129
+ "special": false
130
+ },
131
+ "50268": {
132
+ "content": " ",
133
+ "lstrip": false,
134
+ "normalized": true,
135
+ "rstrip": false,
136
+ "single_word": false,
137
+ "special": false
138
+ },
139
+ "50269": {
140
+ "content": " ",
141
+ "lstrip": false,
142
+ "normalized": true,
143
+ "rstrip": false,
144
+ "single_word": false,
145
+ "special": false
146
+ },
147
+ "50270": {
148
+ "content": " ",
149
+ "lstrip": false,
150
+ "normalized": true,
151
+ "rstrip": false,
152
+ "single_word": false,
153
+ "special": false
154
+ },
155
+ "50271": {
156
+ "content": " ",
157
+ "lstrip": false,
158
+ "normalized": true,
159
+ "rstrip": false,
160
+ "single_word": false,
161
+ "special": false
162
+ },
163
+ "50272": {
164
+ "content": " ",
165
+ "lstrip": false,
166
+ "normalized": true,
167
+ "rstrip": false,
168
+ "single_word": false,
169
+ "special": false
170
+ },
171
+ "50273": {
172
+ "content": " ",
173
+ "lstrip": false,
174
+ "normalized": true,
175
+ "rstrip": false,
176
+ "single_word": false,
177
+ "special": false
178
+ },
179
+ "50274": {
180
+ "content": " ",
181
+ "lstrip": false,
182
+ "normalized": true,
183
+ "rstrip": false,
184
+ "single_word": false,
185
+ "special": false
186
+ },
187
+ "50275": {
188
+ "content": " ",
189
+ "lstrip": false,
190
+ "normalized": true,
191
+ "rstrip": false,
192
+ "single_word": false,
193
+ "special": false
194
+ },
195
+ "50276": {
196
+ "content": " ",
197
+ "lstrip": false,
198
+ "normalized": true,
199
+ "rstrip": false,
200
+ "single_word": false,
201
+ "special": false
202
+ },
203
+ "50277": {
204
+ "content": "|||EMAIL_ADDRESS|||",
205
+ "lstrip": false,
206
+ "normalized": true,
207
+ "rstrip": false,
208
+ "single_word": false,
209
+ "special": false
210
+ },
211
+ "50278": {
212
+ "content": "|||PHONE_NUMBER|||",
213
+ "lstrip": false,
214
+ "normalized": true,
215
+ "rstrip": false,
216
+ "single_word": false,
217
+ "special": false
218
+ },
219
+ "50279": {
220
+ "content": "<|endoftext|>",
221
+ "lstrip": false,
222
+ "normalized": false,
223
+ "rstrip": false,
224
+ "single_word": false,
225
+ "special": true
226
+ },
227
+ "50280": {
228
+ "content": "[UNK]",
229
+ "lstrip": false,
230
+ "normalized": false,
231
+ "rstrip": false,
232
+ "single_word": false,
233
+ "special": true
234
+ },
235
+ "50281": {
236
+ "content": "[CLS]",
237
+ "lstrip": false,
238
+ "normalized": false,
239
+ "rstrip": false,
240
+ "single_word": false,
241
+ "special": true
242
+ },
243
+ "50282": {
244
+ "content": "[SEP]",
245
+ "lstrip": false,
246
+ "normalized": false,
247
+ "rstrip": false,
248
+ "single_word": false,
249
+ "special": true
250
+ },
251
+ "50283": {
252
+ "content": "[PAD]",
253
+ "lstrip": false,
254
+ "normalized": false,
255
+ "rstrip": false,
256
+ "single_word": false,
257
+ "special": true
258
+ },
259
+ "50284": {
260
+ "content": "[MASK]",
261
+ "lstrip": true,
262
+ "normalized": false,
263
+ "rstrip": false,
264
+ "single_word": false,
265
+ "special": true
266
+ },
267
+ "50285": {
268
+ "content": "[unused0]",
269
+ "lstrip": false,
270
+ "normalized": true,
271
+ "rstrip": false,
272
+ "single_word": false,
273
+ "special": false
274
+ },
275
+ "50286": {
276
+ "content": "[unused1]",
277
+ "lstrip": false,
278
+ "normalized": true,
279
+ "rstrip": false,
280
+ "single_word": false,
281
+ "special": false
282
+ },
283
+ "50287": {
284
+ "content": "[unused2]",
285
+ "lstrip": false,
286
+ "normalized": true,
287
+ "rstrip": false,
288
+ "single_word": false,
289
+ "special": false
290
+ },
291
+ "50288": {
292
+ "content": "[unused3]",
293
+ "lstrip": false,
294
+ "normalized": true,
295
+ "rstrip": false,
296
+ "single_word": false,
297
+ "special": false
298
+ },
299
+ "50289": {
300
+ "content": "[unused4]",
301
+ "lstrip": false,
302
+ "normalized": true,
303
+ "rstrip": false,
304
+ "single_word": false,
305
+ "special": false
306
+ },
307
+ "50290": {
308
+ "content": "[unused5]",
309
+ "lstrip": false,
310
+ "normalized": true,
311
+ "rstrip": false,
312
+ "single_word": false,
313
+ "special": false
314
+ },
315
+ "50291": {
316
+ "content": "[unused6]",
317
+ "lstrip": false,
318
+ "normalized": true,
319
+ "rstrip": false,
320
+ "single_word": false,
321
+ "special": false
322
+ },
323
+ "50292": {
324
+ "content": "[unused7]",
325
+ "lstrip": false,
326
+ "normalized": true,
327
+ "rstrip": false,
328
+ "single_word": false,
329
+ "special": false
330
+ },
331
+ "50293": {
332
+ "content": "[unused8]",
333
+ "lstrip": false,
334
+ "normalized": true,
335
+ "rstrip": false,
336
+ "single_word": false,
337
+ "special": false
338
+ },
339
+ "50294": {
340
+ "content": "[unused9]",
341
+ "lstrip": false,
342
+ "normalized": true,
343
+ "rstrip": false,
344
+ "single_word": false,
345
+ "special": false
346
+ },
347
+ "50295": {
348
+ "content": "[unused10]",
349
+ "lstrip": false,
350
+ "normalized": true,
351
+ "rstrip": false,
352
+ "single_word": false,
353
+ "special": false
354
+ },
355
+ "50296": {
356
+ "content": "[unused11]",
357
+ "lstrip": false,
358
+ "normalized": true,
359
+ "rstrip": false,
360
+ "single_word": false,
361
+ "special": false
362
+ },
363
+ "50297": {
364
+ "content": "[unused12]",
365
+ "lstrip": false,
366
+ "normalized": true,
367
+ "rstrip": false,
368
+ "single_word": false,
369
+ "special": false
370
+ },
371
+ "50298": {
372
+ "content": "[unused13]",
373
+ "lstrip": false,
374
+ "normalized": true,
375
+ "rstrip": false,
376
+ "single_word": false,
377
+ "special": false
378
+ },
379
+ "50299": {
380
+ "content": "[unused14]",
381
+ "lstrip": false,
382
+ "normalized": true,
383
+ "rstrip": false,
384
+ "single_word": false,
385
+ "special": false
386
+ },
387
+ "50300": {
388
+ "content": "[unused15]",
389
+ "lstrip": false,
390
+ "normalized": true,
391
+ "rstrip": false,
392
+ "single_word": false,
393
+ "special": false
394
+ },
395
+ "50301": {
396
+ "content": "[unused16]",
397
+ "lstrip": false,
398
+ "normalized": true,
399
+ "rstrip": false,
400
+ "single_word": false,
401
+ "special": false
402
+ },
403
+ "50302": {
404
+ "content": "[unused17]",
405
+ "lstrip": false,
406
+ "normalized": true,
407
+ "rstrip": false,
408
+ "single_word": false,
409
+ "special": false
410
+ },
411
+ "50303": {
412
+ "content": "[unused18]",
413
+ "lstrip": false,
414
+ "normalized": true,
415
+ "rstrip": false,
416
+ "single_word": false,
417
+ "special": false
418
+ },
419
+ "50304": {
420
+ "content": "[unused19]",
421
+ "lstrip": false,
422
+ "normalized": true,
423
+ "rstrip": false,
424
+ "single_word": false,
425
+ "special": false
426
+ },
427
+ "50305": {
428
+ "content": "[unused20]",
429
+ "lstrip": false,
430
+ "normalized": true,
431
+ "rstrip": false,
432
+ "single_word": false,
433
+ "special": false
434
+ },
435
+ "50306": {
436
+ "content": "[unused21]",
437
+ "lstrip": false,
438
+ "normalized": true,
439
+ "rstrip": false,
440
+ "single_word": false,
441
+ "special": false
442
+ },
443
+ "50307": {
444
+ "content": "[unused22]",
445
+ "lstrip": false,
446
+ "normalized": true,
447
+ "rstrip": false,
448
+ "single_word": false,
449
+ "special": false
450
+ },
451
+ "50308": {
452
+ "content": "[unused23]",
453
+ "lstrip": false,
454
+ "normalized": true,
455
+ "rstrip": false,
456
+ "single_word": false,
457
+ "special": false
458
+ },
459
+ "50309": {
460
+ "content": "[unused24]",
461
+ "lstrip": false,
462
+ "normalized": true,
463
+ "rstrip": false,
464
+ "single_word": false,
465
+ "special": false
466
+ },
467
+ "50310": {
468
+ "content": "[unused25]",
469
+ "lstrip": false,
470
+ "normalized": true,
471
+ "rstrip": false,
472
+ "single_word": false,
473
+ "special": false
474
+ },
475
+ "50311": {
476
+ "content": "[unused26]",
477
+ "lstrip": false,
478
+ "normalized": true,
479
+ "rstrip": false,
480
+ "single_word": false,
481
+ "special": false
482
+ },
483
+ "50312": {
484
+ "content": "[unused27]",
485
+ "lstrip": false,
486
+ "normalized": true,
487
+ "rstrip": false,
488
+ "single_word": false,
489
+ "special": false
490
+ },
491
+ "50313": {
492
+ "content": "[unused28]",
493
+ "lstrip": false,
494
+ "normalized": true,
495
+ "rstrip": false,
496
+ "single_word": false,
497
+ "special": false
498
+ },
499
+ "50314": {
500
+ "content": "[unused29]",
501
+ "lstrip": false,
502
+ "normalized": true,
503
+ "rstrip": false,
504
+ "single_word": false,
505
+ "special": false
506
+ },
507
+ "50315": {
508
+ "content": "[unused30]",
509
+ "lstrip": false,
510
+ "normalized": true,
511
+ "rstrip": false,
512
+ "single_word": false,
513
+ "special": false
514
+ },
515
+ "50316": {
516
+ "content": "[unused31]",
517
+ "lstrip": false,
518
+ "normalized": true,
519
+ "rstrip": false,
520
+ "single_word": false,
521
+ "special": false
522
+ },
523
+ "50317": {
524
+ "content": "[unused32]",
525
+ "lstrip": false,
526
+ "normalized": true,
527
+ "rstrip": false,
528
+ "single_word": false,
529
+ "special": false
530
+ },
531
+ "50318": {
532
+ "content": "[unused33]",
533
+ "lstrip": false,
534
+ "normalized": true,
535
+ "rstrip": false,
536
+ "single_word": false,
537
+ "special": false
538
+ },
539
+ "50319": {
540
+ "content": "[unused34]",
541
+ "lstrip": false,
542
+ "normalized": true,
543
+ "rstrip": false,
544
+ "single_word": false,
545
+ "special": false
546
+ },
547
+ "50320": {
548
+ "content": "[unused35]",
549
+ "lstrip": false,
550
+ "normalized": true,
551
+ "rstrip": false,
552
+ "single_word": false,
553
+ "special": false
554
+ },
555
+ "50321": {
556
+ "content": "[unused36]",
557
+ "lstrip": false,
558
+ "normalized": true,
559
+ "rstrip": false,
560
+ "single_word": false,
561
+ "special": false
562
+ },
563
+ "50322": {
564
+ "content": "[unused37]",
565
+ "lstrip": false,
566
+ "normalized": true,
567
+ "rstrip": false,
568
+ "single_word": false,
569
+ "special": false
570
+ },
571
+ "50323": {
572
+ "content": "[unused38]",
573
+ "lstrip": false,
574
+ "normalized": true,
575
+ "rstrip": false,
576
+ "single_word": false,
577
+ "special": false
578
+ },
579
+ "50324": {
580
+ "content": "[unused39]",
581
+ "lstrip": false,
582
+ "normalized": true,
583
+ "rstrip": false,
584
+ "single_word": false,
585
+ "special": false
586
+ },
587
+ "50325": {
588
+ "content": "[unused40]",
589
+ "lstrip": false,
590
+ "normalized": true,
591
+ "rstrip": false,
592
+ "single_word": false,
593
+ "special": false
594
+ },
595
+ "50326": {
596
+ "content": "[unused41]",
597
+ "lstrip": false,
598
+ "normalized": true,
599
+ "rstrip": false,
600
+ "single_word": false,
601
+ "special": false
602
+ },
603
+ "50327": {
604
+ "content": "[unused42]",
605
+ "lstrip": false,
606
+ "normalized": true,
607
+ "rstrip": false,
608
+ "single_word": false,
609
+ "special": false
610
+ },
611
+ "50328": {
612
+ "content": "[unused43]",
613
+ "lstrip": false,
614
+ "normalized": true,
615
+ "rstrip": false,
616
+ "single_word": false,
617
+ "special": false
618
+ },
619
+ "50329": {
620
+ "content": "[unused44]",
621
+ "lstrip": false,
622
+ "normalized": true,
623
+ "rstrip": false,
624
+ "single_word": false,
625
+ "special": false
626
+ },
627
+ "50330": {
628
+ "content": "[unused45]",
629
+ "lstrip": false,
630
+ "normalized": true,
631
+ "rstrip": false,
632
+ "single_word": false,
633
+ "special": false
634
+ },
635
+ "50331": {
636
+ "content": "[unused46]",
637
+ "lstrip": false,
638
+ "normalized": true,
639
+ "rstrip": false,
640
+ "single_word": false,
641
+ "special": false
642
+ },
643
+ "50332": {
644
+ "content": "[unused47]",
645
+ "lstrip": false,
646
+ "normalized": true,
647
+ "rstrip": false,
648
+ "single_word": false,
649
+ "special": false
650
+ },
651
+ "50333": {
652
+ "content": "[unused48]",
653
+ "lstrip": false,
654
+ "normalized": true,
655
+ "rstrip": false,
656
+ "single_word": false,
657
+ "special": false
658
+ },
659
+ "50334": {
660
+ "content": "[unused49]",
661
+ "lstrip": false,
662
+ "normalized": true,
663
+ "rstrip": false,
664
+ "single_word": false,
665
+ "special": false
666
+ },
667
+ "50335": {
668
+ "content": "[unused50]",
669
+ "lstrip": false,
670
+ "normalized": true,
671
+ "rstrip": false,
672
+ "single_word": false,
673
+ "special": false
674
+ },
675
+ "50336": {
676
+ "content": "[unused51]",
677
+ "lstrip": false,
678
+ "normalized": true,
679
+ "rstrip": false,
680
+ "single_word": false,
681
+ "special": false
682
+ },
683
+ "50337": {
684
+ "content": "[unused52]",
685
+ "lstrip": false,
686
+ "normalized": true,
687
+ "rstrip": false,
688
+ "single_word": false,
689
+ "special": false
690
+ },
691
+ "50338": {
692
+ "content": "[unused53]",
693
+ "lstrip": false,
694
+ "normalized": true,
695
+ "rstrip": false,
696
+ "single_word": false,
697
+ "special": false
698
+ },
699
+ "50339": {
700
+ "content": "[unused54]",
701
+ "lstrip": false,
702
+ "normalized": true,
703
+ "rstrip": false,
704
+ "single_word": false,
705
+ "special": false
706
+ },
707
+ "50340": {
708
+ "content": "[unused55]",
709
+ "lstrip": false,
710
+ "normalized": true,
711
+ "rstrip": false,
712
+ "single_word": false,
713
+ "special": false
714
+ },
715
+ "50341": {
716
+ "content": "[unused56]",
717
+ "lstrip": false,
718
+ "normalized": true,
719
+ "rstrip": false,
720
+ "single_word": false,
721
+ "special": false
722
+ },
723
+ "50342": {
724
+ "content": "[unused57]",
725
+ "lstrip": false,
726
+ "normalized": true,
727
+ "rstrip": false,
728
+ "single_word": false,
729
+ "special": false
730
+ },
731
+ "50343": {
732
+ "content": "[unused58]",
733
+ "lstrip": false,
734
+ "normalized": true,
735
+ "rstrip": false,
736
+ "single_word": false,
737
+ "special": false
738
+ },
739
+ "50344": {
740
+ "content": "[unused59]",
741
+ "lstrip": false,
742
+ "normalized": true,
743
+ "rstrip": false,
744
+ "single_word": false,
745
+ "special": false
746
+ },
747
+ "50345": {
748
+ "content": "[unused60]",
749
+ "lstrip": false,
750
+ "normalized": true,
751
+ "rstrip": false,
752
+ "single_word": false,
753
+ "special": false
754
+ },
755
+ "50346": {
756
+ "content": "[unused61]",
757
+ "lstrip": false,
758
+ "normalized": true,
759
+ "rstrip": false,
760
+ "single_word": false,
761
+ "special": false
762
+ },
763
+ "50347": {
764
+ "content": "[unused62]",
765
+ "lstrip": false,
766
+ "normalized": true,
767
+ "rstrip": false,
768
+ "single_word": false,
769
+ "special": false
770
+ },
771
+ "50348": {
772
+ "content": "[unused63]",
773
+ "lstrip": false,
774
+ "normalized": true,
775
+ "rstrip": false,
776
+ "single_word": false,
777
+ "special": false
778
+ },
779
+ "50349": {
780
+ "content": "[unused64]",
781
+ "lstrip": false,
782
+ "normalized": true,
783
+ "rstrip": false,
784
+ "single_word": false,
785
+ "special": false
786
+ },
787
+ "50350": {
788
+ "content": "[unused65]",
789
+ "lstrip": false,
790
+ "normalized": true,
791
+ "rstrip": false,
792
+ "single_word": false,
793
+ "special": false
794
+ },
795
+ "50351": {
796
+ "content": "[unused66]",
797
+ "lstrip": false,
798
+ "normalized": true,
799
+ "rstrip": false,
800
+ "single_word": false,
801
+ "special": false
802
+ },
803
+ "50352": {
804
+ "content": "[unused67]",
805
+ "lstrip": false,
806
+ "normalized": true,
807
+ "rstrip": false,
808
+ "single_word": false,
809
+ "special": false
810
+ },
811
+ "50353": {
812
+ "content": "[unused68]",
813
+ "lstrip": false,
814
+ "normalized": true,
815
+ "rstrip": false,
816
+ "single_word": false,
817
+ "special": false
818
+ },
819
+ "50354": {
820
+ "content": "[unused69]",
821
+ "lstrip": false,
822
+ "normalized": true,
823
+ "rstrip": false,
824
+ "single_word": false,
825
+ "special": false
826
+ },
827
+ "50355": {
828
+ "content": "[unused70]",
829
+ "lstrip": false,
830
+ "normalized": true,
831
+ "rstrip": false,
832
+ "single_word": false,
833
+ "special": false
834
+ },
835
+ "50356": {
836
+ "content": "[unused71]",
837
+ "lstrip": false,
838
+ "normalized": true,
839
+ "rstrip": false,
840
+ "single_word": false,
841
+ "special": false
842
+ },
843
+ "50357": {
844
+ "content": "[unused72]",
845
+ "lstrip": false,
846
+ "normalized": true,
847
+ "rstrip": false,
848
+ "single_word": false,
849
+ "special": false
850
+ },
851
+ "50358": {
852
+ "content": "[unused73]",
853
+ "lstrip": false,
854
+ "normalized": true,
855
+ "rstrip": false,
856
+ "single_word": false,
857
+ "special": false
858
+ },
859
+ "50359": {
860
+ "content": "[unused74]",
861
+ "lstrip": false,
862
+ "normalized": true,
863
+ "rstrip": false,
864
+ "single_word": false,
865
+ "special": false
866
+ },
867
+ "50360": {
868
+ "content": "[unused75]",
869
+ "lstrip": false,
870
+ "normalized": true,
871
+ "rstrip": false,
872
+ "single_word": false,
873
+ "special": false
874
+ },
875
+ "50361": {
876
+ "content": "[unused76]",
877
+ "lstrip": false,
878
+ "normalized": true,
879
+ "rstrip": false,
880
+ "single_word": false,
881
+ "special": false
882
+ },
883
+ "50362": {
884
+ "content": "[unused77]",
885
+ "lstrip": false,
886
+ "normalized": true,
887
+ "rstrip": false,
888
+ "single_word": false,
889
+ "special": false
890
+ },
891
+ "50363": {
892
+ "content": "[unused78]",
893
+ "lstrip": false,
894
+ "normalized": true,
895
+ "rstrip": false,
896
+ "single_word": false,
897
+ "special": false
898
+ },
899
+ "50364": {
900
+ "content": "[unused79]",
901
+ "lstrip": false,
902
+ "normalized": true,
903
+ "rstrip": false,
904
+ "single_word": false,
905
+ "special": false
906
+ },
907
+ "50365": {
908
+ "content": "[unused80]",
909
+ "lstrip": false,
910
+ "normalized": true,
911
+ "rstrip": false,
912
+ "single_word": false,
913
+ "special": false
914
+ },
915
+ "50366": {
916
+ "content": "[unused81]",
917
+ "lstrip": false,
918
+ "normalized": true,
919
+ "rstrip": false,
920
+ "single_word": false,
921
+ "special": false
922
+ },
923
+ "50367": {
924
+ "content": "[unused82]",
925
+ "lstrip": false,
926
+ "normalized": true,
927
+ "rstrip": false,
928
+ "single_word": false,
929
+ "special": false
930
+ }
931
+ },
932
+ "clean_up_tokenization_spaces": true,
933
+ "cls_token": "[CLS]",
934
+ "extra_special_tokens": {},
935
+ "mask_token": "[MASK]",
936
+ "model_input_names": [
937
+ "input_ids",
938
+ "attention_mask"
939
+ ],
940
+ "model_max_length": 8192,
941
+ "pad_token": "[PAD]",
942
+ "sep_token": "[SEP]",
943
+ "tokenizer_class": "PreTrainedTokenizer",
944
+ "unk_token": "[UNK]"
945
+ }