|  | --- | 
					
						
						|  | license: agpl-3.0 | 
					
						
						|  | datasets: | 
					
						
						|  | - ds4sd/DocLayNet | 
					
						
						|  | language: | 
					
						
						|  | - en | 
					
						
						|  | metrics: | 
					
						
						|  | - accuracy | 
					
						
						|  | - mape | 
					
						
						|  | - precision | 
					
						
						|  | - recall | 
					
						
						|  | pipeline_tag: object-detection | 
					
						
						|  | --- | 
					
						
						|  |  | 
					
						
						|  | 🤗 Live Demo here: [https://huggingface.co/spaces/omoured/YOLOv10-Document-Layout-Analysis](https://huggingface.co/spaces/omoured/YOLOv10-Document-Layout-Analysis) | 
					
						
						|  |  | 
					
						
						|  | <!-- ABOUT THE PROJECT --> | 
					
						
						|  | ## About 📋 | 
					
						
						|  |  | 
					
						
						|  | The models were fine-tuned using 4xA100 GPUs on the Doclaynet-base dataset, which consists of 6910 training images, 648 validation images, and 499 test images. | 
					
						
						|  |  | 
					
						
						|  | <p align="center"> | 
					
						
						|  | <img src="https://github.com/moured/YOLOv10-Document-Layout-Analysis/raw/main/images/samples.gif" height="320"/> | 
					
						
						|  | </p> | 
					
						
						|  |  | 
					
						
						|  | ## Results 📊 | 
					
						
						|  | | Model   | mAP50 | mAP50-95 | Model Weights | | 
					
						
						|  | |---------|-------|----------|---------------| | 
					
						
						|  | | YOLOv10-x | 0.924 | 0.740 | [Download](https://github.com/moured/YOLOv10-Document-Layout-Analysis/releases/download/doclaynet_weights/yolov10x_best.pt) | | 
					
						
						|  | | YOLOv10-b | 0.922 | 0.732 | [Download](https://github.com/moured/YOLOv10-Document-Layout-Analysis/releases/download/doclaynet_weights/yolov10b_best.pt) | | 
					
						
						|  | | YOLOv10-l | 0.921 | 0.732 | [Download](https://github.com/moured/YOLOv10-Document-Layout-Analysis/releases/download/doclaynet_weights/yolov10l_best.pt) | | 
					
						
						|  | | YOLOv10-m | 0.917 | 0.737 | [Download](https://github.com/moured/YOLOv10-Document-Layout-Analysis/releases/download/doclaynet_weights/yolov10m_best.pt) | | 
					
						
						|  | | YOLOv10-s | 0.905 | 0.713 | [Download](https://github.com/moured/YOLOv10-Document-Layout-Analysis/releases/download/doclaynet_weights/yolov10s_best.pt) | | 
					
						
						|  | | YOLOv10-n | 0.892 | 0.685 | [Download](https://github.com/moured/YOLOv10-Document-Layout-Analysis/releases/download/doclaynet_weights/yolov10n_best.pt) | | 
					
						
						|  |  | 
					
						
						|  | ## Codes 🔥 | 
					
						
						|  |  | 
					
						
						|  | Check out our Github repo for inference codes: [https://github.com/moured/YOLOv10-Document-Layout-Analysis](https://github.com/moured/YOLOv10-Document-Layout-Analysis) | 
					
						
						|  |  | 
					
						
						|  | ## References 📝 | 
					
						
						|  |  | 
					
						
						|  | 1. YOLOv10 | 
					
						
						|  | ``` | 
					
						
						|  | BibTeX | 
					
						
						|  | @article{wang2024yolov10, | 
					
						
						|  | title={YOLOv10: Real-Time End-to-End Object Detection}, | 
					
						
						|  | author={Wang, Ao and Chen, Hui and Liu, Lihao and Chen, Kai and Lin, Zijia and Han, Jungong and Ding, Guiguang}, | 
					
						
						|  | journal={arXiv preprint arXiv:2405.14458}, | 
					
						
						|  | year={2024} | 
					
						
						|  | } | 
					
						
						|  | ``` | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | 2. DocLayNet | 
					
						
						|  | ``` | 
					
						
						|  | @article{doclaynet2022, | 
					
						
						|  | title = {DocLayNet: A Large Human-Annotated Dataset for Document-Layout Analysis}, | 
					
						
						|  | doi = {10.1145/3534678.353904}, | 
					
						
						|  | url = {https://arxiv.org/abs/2206.01062}, | 
					
						
						|  | author = {Pfitzmann, Birgit and Auer, Christoph and Dolfi, Michele and Nassar, Ahmed S and Staar, Peter W J}, | 
					
						
						|  | year = {2022} | 
					
						
						|  | } | 
					
						
						|  | ``` | 
					
						
						|  |  | 
					
						
						|  | ## Contact | 
					
						
						|  | LinkedIn: [https://www.linkedin.com/in/omar-moured/](https://www.linkedin.com/in/omar-moured/) |