NuNER-v0.1 / README.md
Serega6678's picture
Update README.md
8a1ec8a
|
raw
history blame
1.72 kB
---
license: mit
language:
- en
pipeline_tag: token-classification
inference: false
tags:
- token-classification
- entity-recognition
- generic
- feature-extraction
- foundation-model
---
# SOTA Entity Recognition V1 foundation model by NuMind 🔥
This model provides the best embedding for the Entity Recognition task.
**Checkout other models by NuMind:**
* SOTA multilingual Entity Recognition foundation model: [link](https://huggingface.co/numind/entity-recognition-multilingual-general-sota-v1)
* SOTA Sentiment Analysis foundation model: [English](https://huggingface.co/numind/generic-sentiment-v1), [Multilingual](https://huggingface.co/numind/generic-sentiment-multi-v1)
## About
[Roberta-base](https://huggingface.co/roberta-base) fine-tuned on an artificially annotated subset of [C4](https://huggingface.co/datasets/c4).
**Results:**
## Usage
Embeddings can be used out of the box or fine-tuned on specific datasets.
Get embeddings:
```python
import torch
import transformers
model = transformers.AutoModel.from_pretrained(
'numind/entity-recognition-general-sota-v1',
output_hidden_states=True
)
tokenizer = transformers.AutoTokenizer.from_pretrained(
'numind/entity-recognition-general-sota-v1'
)
text = [
"NuMind is an AI company based in Paris and USA.",
"See other models from us on https://huggingface.co/numind"
]
encoded_input = tokenizer(
text,
return_tensors='pt',
padding=True,
truncation=True
)
output = model(**encoded_input)
# for better quality
emb = torch.cat(
(output.hidden_states[-1], output.hidden_states[-7]),
dim=2
)
# for better speed
# emb = output.hidden_states[-1]
```
## Contact
Sergei Bogdanov: [email protected]