metadata
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:784827
- loss:ContrastiveLoss
base_model: BAAI/bge-large-en-v1.5
widget:
- source_sentence: >-
Represent this sentence for searching relevant passages: Existing methods
for anomaly detection on dynamic graphs struggle with capturing complex
time information in graph structures and generating effective negative
samples for unsupervised learning. These challenges highlight the need for
improved methodologies that can address the limitations of current
approaches in this field.We suggest combining 'a message-passing
framework' and
sentences:
- a single global model
- videos
- sequential polygon generation
- source_sentence: >-
Represent this sentence for searching relevant passages: The study
addresses the need for effective tools that allow both novice and expert
users to analyze the diversity of news coverage about events. It
highlights the importance of tailoring the interface to accommodate
non-expert users while also considering the insights of journalism-savvy
users, indicating a gap in existing systems that cater to varying levels
of expertise in news analysis.We suggest combining 'a coordinated
visualization interface tailored for visualization non-expert users' and
sentences:
- worst-case resource analysis
- Graph Convolution Networks
- a text encoder
- source_sentence: >-
Represent this sentence for searching relevant passages: The accuracy of
pixel flows is crucial for achieving high-quality video enhancement, yet
most prior works focus on estimating dense flows that are generally less
robust and computationally expensive. This highlights a gap in existing
methodologies that fail to prioritize accuracy over density, necessitating
a more efficient approach to flow estimation for video enhancement
tasks.We suggest combining 'sparse point cloud data' and
sentences:
- a Temporal Eigenvalue Loss
- diffusion models
- explicit 3D representations, such as polygonal meshes
- source_sentence: >-
Represent this sentence for searching relevant passages: The traditional
frame of discernment lacks a crucial factor, the sequence of propositions,
which limits the effectiveness of existing methods to measure uncertainty.
This gap highlights the need for a more comprehensive approach that can
better represent the relationships between the elements of the frame of
discernment.We suggest 'combine the order of propositions and the mass of
them' inspired by
sentences:
- >-
the traditional matching-optimization methods where matching is
introduced to handle large displacements before energy-based
optimizations
- encoder-decoder models
- >-
In another vein, researchers propose new attention augmentation methods
to make transformers more accurate, efficient and interpretable
- source_sentence: >-
Represent this sentence for searching relevant passages: The study
addresses the need for effective time series forecasting methods to
estimate the spread of epidemics, particularly in light of the resurgence
of COVID-19 cases. It highlights the importance of accurately modeling
both linear and non-linear features of epidemic data to provide state
authorities and health officials with reliable short-term forecasts and
strategies.We suggest combining 'ARIMA' and
sentences:
- Transformers
- a traditional feature-mixed branch
- >-
the human brain is able to efficiently learn effective control
strategies using limited resources
pipeline_tag: sentence-similarity
library_name: sentence-transformers
license: cc
datasets:
- noystl/Recombination-Pred
language:
- en
SentenceTransformer based on BAAI/bge-large-en-v1.5
This is a sentence-transformers model finetuned from BAAI/bge-large-en-v1.5. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: BAAI/bge-large-en-v1.5
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 1024 dimensions
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
"Represent this sentence for searching relevant passages: The study addresses the need for effective time series forecasting methods to estimate the spread of epidemics, particularly in light of the resurgence of COVID-19 cases. It highlights the importance of accurately modeling both linear and non-linear features of epidemic data to provide state authorities and health officials with reliable short-term forecasts and strategies.We suggest combining 'ARIMA' and ",
'Transformers',
'the human brain is able to efficiently learn effective control strategies using limited resources',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Training Details
Training Dataset
Unnamed Dataset
- Size: 784,827 training samples
- Columns:
query
,answer
, andlabel
- Approximate statistics based on the first 1000 samples:
query answer label type string string int details - min: 66 tokens
- mean: 83.86 tokens
- max: 99 tokens
- min: 3 tokens
- mean: 8.63 tokens
- max: 49 tokens
- 0: ~96.70%
- 1: ~3.30%
- Samples:
query answer label Represent this sentence for searching relevant passages: The study addresses the challenge of action segmentation under weak supervision, where the available ground truth only indicates the presence of actions without providing their temporal ordering or occurrence timing in training videos. This limitation necessitates the development of a method to generate pseudo-ground truth for effective training and improve performance in action segmentation and alignment tasks.We suggest combining 'a Hidden Markov Model' and
a multilayer perceptron
1
Represent this sentence for searching relevant passages: The study addresses the challenge of action segmentation under weak supervision, where the available ground truth only indicates the presence of actions without providing their temporal ordering or occurrence timing in training videos. This limitation necessitates the development of a method to generate pseudo-ground truth for effective training and improve performance in action segmentation and alignment tasks.We suggest combining 'a Hidden Markov Model' and
global expression information
0
Represent this sentence for searching relevant passages: The study addresses the challenge of action segmentation under weak supervision, where the available ground truth only indicates the presence of actions without providing their temporal ordering or occurrence timing in training videos. This limitation necessitates the development of a method to generate pseudo-ground truth for effective training and improve performance in action segmentation and alignment tasks.We suggest combining 'a Hidden Markov Model' and
some relevant physical parameters
0
- Loss:
ContrastiveLoss
with these parameters:{ "distance_metric": "SiameseDistanceMetric.COSINE_DISTANCE", "margin": 0.5, "size_average": true }
Training Hyperparameters
Non-Default Hyperparameters
per_device_train_batch_size
: 64learning_rate
: 2.3351317368662443e-06warmup_ratio
: 0.11883406097525227bf16
: Trueprompts
: {'query': 'Represent this sentence for searching relevant passages: '}batch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: noprediction_loss_only
: Trueper_device_train_batch_size
: 64per_device_eval_batch_size
: 8per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 2.3351317368662443e-06weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 3max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.11883406097525227warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Truefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: {'query': 'Represent this sentence for searching relevant passages: '}batch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportional
Training Logs
Click to expand
Epoch | Step | Training Loss |
---|---|---|
0.0082 | 100 | 0.0051 |
0.0163 | 200 | 0.0038 |
0.0245 | 300 | 0.0037 |
0.0326 | 400 | 0.0036 |
0.0408 | 500 | 0.0046 |
0.0489 | 600 | 0.0035 |
0.0571 | 700 | 0.0035 |
0.0652 | 800 | 0.0034 |
0.0734 | 900 | 0.0044 |
0.0815 | 1000 | 0.0034 |
0.0897 | 1100 | 0.0035 |
0.0979 | 1200 | 0.0034 |
0.1060 | 1300 | 0.0034 |
0.1142 | 1400 | 0.0045 |
0.1223 | 1500 | 0.0034 |
0.1305 | 1600 | 0.0034 |
0.1386 | 1700 | 0.0033 |
0.1468 | 1800 | 0.0043 |
0.1549 | 1900 | 0.0034 |
0.1631 | 2000 | 0.0033 |
0.1712 | 2100 | 0.0032 |
0.1794 | 2200 | 0.0033 |
0.1876 | 2300 | 0.0044 |
0.1957 | 2400 | 0.0033 |
0.2039 | 2500 | 0.0034 |
0.2120 | 2600 | 0.0033 |
0.2202 | 2700 | 0.0042 |
0.2283 | 2800 | 0.0034 |
0.2365 | 2900 | 0.0033 |
0.2446 | 3000 | 0.0033 |
0.2528 | 3100 | 0.0036 |
0.2609 | 3200 | 0.0039 |
0.2691 | 3300 | 0.0033 |
0.2773 | 3400 | 0.0032 |
0.2854 | 3500 | 0.0034 |
0.2936 | 3600 | 0.0041 |
0.3017 | 3700 | 0.0031 |
0.3099 | 3800 | 0.0032 |
0.3180 | 3900 | 0.0031 |
0.3262 | 4000 | 0.004 |
0.3343 | 4100 | 0.0034 |
0.3425 | 4200 | 0.003 |
0.3506 | 4300 | 0.0032 |
0.3588 | 4400 | 0.0032 |
0.3670 | 4500 | 0.004 |
0.3751 | 4600 | 0.0031 |
0.3833 | 4700 | 0.0033 |
0.3914 | 4800 | 0.0031 |
0.3996 | 4900 | 0.004 |
0.4077 | 5000 | 0.0032 |
0.4159 | 5100 | 0.0031 |
0.4240 | 5200 | 0.0031 |
0.4322 | 5300 | 0.0031 |
0.4403 | 5400 | 0.0039 |
0.4485 | 5500 | 0.003 |
0.4567 | 5600 | 0.003 |
0.4648 | 5700 | 0.0031 |
0.4730 | 5800 | 0.0038 |
0.4811 | 5900 | 0.0031 |
0.4893 | 6000 | 0.0032 |
0.4974 | 6100 | 0.0031 |
0.5056 | 6200 | 0.0033 |
0.5137 | 6300 | 0.0035 |
0.5219 | 6400 | 0.0031 |
0.5300 | 6500 | 0.0031 |
0.5382 | 6600 | 0.0031 |
0.5464 | 6700 | 0.0038 |
0.5545 | 6800 | 0.0031 |
0.5627 | 6900 | 0.003 |
0.5708 | 7000 | 0.0029 |
0.5790 | 7100 | 0.0037 |
0.5871 | 7200 | 0.0033 |
0.5953 | 7300 | 0.0031 |
0.6034 | 7400 | 0.003 |
0.6116 | 7500 | 0.003 |
0.6198 | 7600 | 0.004 |
0.6279 | 7700 | 0.0031 |
0.6361 | 7800 | 0.0031 |
0.6442 | 7900 | 0.0031 |
0.6524 | 8000 | 0.0039 |
0.6605 | 8100 | 0.0029 |
0.6687 | 8200 | 0.003 |
0.6768 | 8300 | 0.0029 |
0.6850 | 8400 | 0.0028 |
0.6931 | 8500 | 0.0036 |
0.7013 | 8600 | 0.0031 |
0.7095 | 8700 | 0.0029 |
0.7176 | 8800 | 0.0028 |
0.7258 | 8900 | 0.0035 |
0.7339 | 9000 | 0.0033 |
0.7421 | 9100 | 0.003 |
0.7502 | 9200 | 0.0028 |
0.7584 | 9300 | 0.0029 |
0.7665 | 9400 | 0.0035 |
0.7747 | 9500 | 0.003 |
0.7828 | 9600 | 0.0028 |
0.7910 | 9700 | 0.0027 |
0.7992 | 9800 | 0.0034 |
0.8073 | 9900 | 0.0032 |
0.8155 | 10000 | 0.003 |
0.8236 | 10100 | 0.0029 |
0.8318 | 10200 | 0.0032 |
0.8399 | 10300 | 0.0032 |
0.8481 | 10400 | 0.003 |
0.8562 | 10500 | 0.0029 |
0.8644 | 10600 | 0.0029 |
0.8725 | 10700 | 0.0033 |
0.8807 | 10800 | 0.003 |
0.8889 | 10900 | 0.0029 |
0.8970 | 11000 | 0.0028 |
0.9052 | 11100 | 0.0035 |
0.9133 | 11200 | 0.003 |
0.9215 | 11300 | 0.0029 |
0.9296 | 11400 | 0.0029 |
0.9378 | 11500 | 0.0029 |
0.9459 | 11600 | 0.0034 |
0.9541 | 11700 | 0.0031 |
0.9622 | 11800 | 0.0028 |
0.9704 | 11900 | 0.003 |
0.9786 | 12000 | 0.0035 |
0.9867 | 12100 | 0.0032 |
0.9949 | 12200 | 0.003 |
1.0030 | 12300 | 0.0033 |
1.0112 | 12400 | 0.0029 |
1.0193 | 12500 | 0.003 |
1.0275 | 12600 | 0.0029 |
1.0356 | 12700 | 0.0036 |
1.0438 | 12800 | 0.003 |
1.0519 | 12900 | 0.0027 |
1.0601 | 13000 | 0.0028 |
1.0683 | 13100 | 0.0028 |
1.0764 | 13200 | 0.0036 |
1.0846 | 13300 | 0.0027 |
1.0927 | 13400 | 0.0028 |
1.1009 | 13500 | 0.0029 |
1.1090 | 13600 | 0.0037 |
1.1172 | 13700 | 0.0029 |
1.1253 | 13800 | 0.0029 |
1.1335 | 13900 | 0.0027 |
1.1416 | 14000 | 0.0033 |
1.1498 | 14100 | 0.003 |
1.1580 | 14200 | 0.0027 |
1.1661 | 14300 | 0.0028 |
1.1743 | 14400 | 0.0026 |
1.1824 | 14500 | 0.0036 |
1.1906 | 14600 | 0.0028 |
1.1987 | 14700 | 0.0027 |
1.2069 | 14800 | 0.0029 |
1.2150 | 14900 | 0.0035 |
1.2232 | 15000 | 0.0027 |
1.2313 | 15100 | 0.0027 |
1.2395 | 15200 | 0.0027 |
1.2477 | 15300 | 0.0028 |
1.2558 | 15400 | 0.0035 |
1.2640 | 15500 | 0.0027 |
1.2721 | 15600 | 0.0027 |
1.2803 | 15700 | 0.0027 |
1.2884 | 15800 | 0.0037 |
1.2966 | 15900 | 0.0027 |
1.3047 | 16000 | 0.0027 |
1.3129 | 16100 | 0.0027 |
1.3210 | 16200 | 0.0028 |
1.3292 | 16300 | 0.0033 |
1.3374 | 16400 | 0.0026 |
1.3455 | 16500 | 0.0025 |
1.3537 | 16600 | 0.0028 |
1.3618 | 16700 | 0.0034 |
1.3700 | 16800 | 0.0027 |
1.3781 | 16900 | 0.0026 |
1.3863 | 17000 | 0.0027 |
1.3944 | 17100 | 0.0033 |
1.4026 | 17200 | 0.0027 |
1.4107 | 17300 | 0.0027 |
1.4189 | 17400 | 0.0026 |
1.4271 | 17500 | 0.0027 |
1.4352 | 17600 | 0.0034 |
1.4434 | 17700 | 0.0027 |
1.4515 | 17800 | 0.0025 |
1.4597 | 17900 | 0.0027 |
1.4678 | 18000 | 0.0031 |
1.4760 | 18100 | 0.0027 |
1.4841 | 18200 | 0.0027 |
1.4923 | 18300 | 0.0027 |
1.5004 | 18400 | 0.0027 |
1.5086 | 18500 | 0.0031 |
1.5168 | 18600 | 0.0025 |
1.5249 | 18700 | 0.0026 |
1.5331 | 18800 | 0.0027 |
1.5412 | 18900 | 0.0035 |
1.5494 | 19000 | 0.0025 |
1.5575 | 19100 | 0.0027 |
1.5657 | 19200 | 0.0026 |
1.5738 | 19300 | 0.0028 |
1.5820 | 19400 | 0.0032 |
1.5901 | 19500 | 0.0025 |
1.5983 | 19600 | 0.0027 |
1.6065 | 19700 | 0.0026 |
1.6146 | 19800 | 0.0034 |
1.6228 | 19900 | 0.0027 |
1.6309 | 20000 | 0.0027 |
1.6391 | 20100 | 0.0028 |
1.6472 | 20200 | 0.0031 |
1.6554 | 20300 | 0.0028 |
1.6635 | 20400 | 0.0025 |
1.6717 | 20500 | 0.0025 |
1.6798 | 20600 | 0.0026 |
1.6880 | 20700 | 0.003 |
1.6962 | 20800 | 0.0029 |
1.7043 | 20900 | 0.0027 |
1.7125 | 21000 | 0.0025 |
1.7206 | 21100 | 0.0029 |
1.7288 | 21200 | 0.0029 |
1.7369 | 21300 | 0.0027 |
1.7451 | 21400 | 0.0026 |
1.7532 | 21500 | 0.0025 |
1.7614 | 21600 | 0.003 |
1.7696 | 21700 | 0.0028 |
1.7777 | 21800 | 0.0024 |
1.7859 | 21900 | 0.0025 |
1.7940 | 22000 | 0.003 |
1.8022 | 22100 | 0.0026 |
1.8103 | 22200 | 0.0027 |
1.8185 | 22300 | 0.0027 |
1.8266 | 22400 | 0.0026 |
1.8348 | 22500 | 0.003 |
1.8429 | 22600 | 0.0029 |
1.8511 | 22700 | 0.0025 |
1.8593 | 22800 | 0.0026 |
1.8674 | 22900 | 0.0031 |
1.8756 | 23000 | 0.0027 |
1.8837 | 23100 | 0.0026 |
1.8919 | 23200 | 0.0025 |
1.9000 | 23300 | 0.0028 |
1.9082 | 23400 | 0.0027 |
1.9163 | 23500 | 0.0027 |
1.9245 | 23600 | 0.0027 |
1.9326 | 23700 | 0.0026 |
1.9408 | 23800 | 0.0031 |
1.9490 | 23900 | 0.0027 |
1.9571 | 24000 | 0.0027 |
1.9653 | 24100 | 0.0026 |
1.9734 | 24200 | 0.0032 |
1.9816 | 24300 | 0.0029 |
1.9897 | 24400 | 0.0026 |
1.9979 | 24500 | 0.0028 |
2.0060 | 24600 | 0.0029 |
2.0142 | 24700 | 0.0026 |
2.0223 | 24800 | 0.0027 |
2.0305 | 24900 | 0.0033 |
2.0387 | 25000 | 0.0026 |
2.0468 | 25100 | 0.0026 |
2.0550 | 25200 | 0.0024 |
2.0631 | 25300 | 0.0026 |
2.0713 | 25400 | 0.0033 |
2.0794 | 25500 | 0.0025 |
2.0876 | 25600 | 0.0026 |
2.0957 | 25700 | 0.0026 |
2.1039 | 25800 | 0.0033 |
2.1120 | 25900 | 0.0025 |
2.1202 | 26000 | 0.0026 |
2.1284 | 26100 | 0.0026 |
2.1365 | 26200 | 0.0025 |
2.1447 | 26300 | 0.0031 |
2.1528 | 26400 | 0.0026 |
2.1610 | 26500 | 0.0025 |
2.1691 | 26600 | 0.0026 |
2.1773 | 26700 | 0.0032 |
2.1854 | 26800 | 0.0026 |
2.1936 | 26900 | 0.0026 |
2.2017 | 27000 | 0.0025 |
2.2099 | 27100 | 0.0032 |
2.2181 | 27200 | 0.0025 |
2.2262 | 27300 | 0.0025 |
2.2344 | 27400 | 0.0024 |
2.2425 | 27500 | 0.0025 |
2.2507 | 27600 | 0.0033 |
2.2588 | 27700 | 0.0024 |
2.2670 | 27800 | 0.0024 |
2.2751 | 27900 | 0.0024 |
2.2833 | 28000 | 0.0033 |
2.2914 | 28100 | 0.0025 |
2.2996 | 28200 | 0.0024 |
2.3078 | 28300 | 0.0026 |
2.3159 | 28400 | 0.0024 |
2.3241 | 28500 | 0.0032 |
2.3322 | 28600 | 0.0025 |
2.3404 | 28700 | 0.0024 |
2.3485 | 28800 | 0.0024 |
2.3567 | 28900 | 0.0032 |
2.3648 | 29000 | 0.0025 |
2.3730 | 29100 | 0.0024 |
2.3811 | 29200 | 0.0024 |
2.3893 | 29300 | 0.0028 |
2.3975 | 29400 | 0.003 |
2.4056 | 29500 | 0.0023 |
2.4138 | 29600 | 0.0025 |
2.4219 | 29700 | 0.0024 |
2.4301 | 29800 | 0.0032 |
2.4382 | 29900 | 0.0025 |
2.4464 | 30000 | 0.0024 |
2.4545 | 30100 | 0.0023 |
2.4627 | 30200 | 0.003 |
2.4708 | 30300 | 0.0024 |
2.4790 | 30400 | 0.0025 |
2.4872 | 30500 | 0.0025 |
2.4953 | 30600 | 0.0025 |
2.5035 | 30700 | 0.0031 |
2.5116 | 30800 | 0.0022 |
2.5198 | 30900 | 0.0024 |
2.5279 | 31000 | 0.0024 |
2.5361 | 31100 | 0.0032 |
2.5442 | 31200 | 0.0024 |
2.5524 | 31300 | 0.0023 |
2.5605 | 31400 | 0.0025 |
2.5687 | 31500 | 0.0024 |
2.5769 | 31600 | 0.0031 |
2.5850 | 31700 | 0.0024 |
2.5932 | 31800 | 0.0024 |
2.6013 | 31900 | 0.0024 |
2.6095 | 32000 | 0.0031 |
2.6176 | 32100 | 0.0025 |
2.6258 | 32200 | 0.0025 |
2.6339 | 32300 | 0.0025 |
2.6421 | 32400 | 0.0027 |
2.6502 | 32500 | 0.0029 |
2.6584 | 32600 | 0.0024 |
2.6666 | 32700 | 0.0023 |
2.6747 | 32800 | 0.0025 |
2.6829 | 32900 | 0.0028 |
2.6910 | 33000 | 0.0026 |
2.6992 | 33100 | 0.0025 |
2.7073 | 33200 | 0.0024 |
2.7155 | 33300 | 0.0025 |
2.7236 | 33400 | 0.0026 |
2.7318 | 33500 | 0.0027 |
2.7399 | 33600 | 0.0025 |
2.7481 | 33700 | 0.0024 |
2.7563 | 33800 | 0.0028 |
2.7644 | 33900 | 0.0025 |
2.7726 | 34000 | 0.0024 |
2.7807 | 34100 | 0.0023 |
2.7889 | 34200 | 0.0027 |
2.7970 | 34300 | 0.0024 |
2.8052 | 34400 | 0.0025 |
2.8133 | 34500 | 0.0024 |
2.8215 | 34600 | 0.0024 |
2.8297 | 34700 | 0.0029 |
2.8378 | 34800 | 0.0027 |
2.8460 | 34900 | 0.0025 |
2.8541 | 35000 | 0.0023 |
2.8623 | 35100 | 0.0029 |
2.8704 | 35200 | 0.0025 |
2.8786 | 35300 | 0.0024 |
2.8867 | 35400 | 0.0024 |
2.8949 | 35500 | 0.0024 |
2.9030 | 35600 | 0.0028 |
2.9112 | 35700 | 0.0026 |
2.9194 | 35800 | 0.0023 |
2.9275 | 35900 | 0.0024 |
2.9357 | 36000 | 0.003 |
2.9438 | 36100 | 0.0025 |
2.9520 | 36200 | 0.0025 |
2.9601 | 36300 | 0.0024 |
2.9683 | 36400 | 0.0028 |
2.9764 | 36500 | 0.0027 |
2.9846 | 36600 | 0.0027 |
2.9927 | 36700 | 0.0025 |
Framework Versions
- Python: 3.11.2
- Sentence Transformers: 3.3.1
- Transformers: 4.49.0
- PyTorch: 2.5.1+cu124
- Accelerate: 1.0.1
- Datasets: 3.1.0
- Tokenizers: 0.21.0
Citation
BibTeX
@misc{sternlicht2025chimeraknowledgebaseidea,
title={CHIMERA: A Knowledge Base of Idea Recombination in Scientific Literature},
author={Noy Sternlicht and Tom Hope},
year={2025},
eprint={2505.20779},
archivePrefix={arXiv},
primaryClass={cs.CL},
url={https://arxiv.org/abs/2505.20779},
}
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
ContrastiveLoss
@inproceedings{hadsell2006dimensionality,
author={Hadsell, R. and Chopra, S. and LeCun, Y.},
booktitle={2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06)},
title={Dimensionality Reduction by Learning an Invariant Mapping},
year={2006},
volume={2},
number={},
pages={1735-1742},
doi={10.1109/CVPR.2006.100}
}
Quick Links