Runs On My 64GB Mac
Collection
The world is your oyster—for small pearls
•
32 items
•
Updated
•
1
Performance Evaluation
The model was evaluated on seven standard NLP benchmarks:
Benchmark brainstormed‑q6 bf16 q6
ARC‑challenge 0.387 0.387 0.378
ARC‑easy 0.447 0.436 0.434
BoolQ 0.625 0.628 0.636
HellaSwag 0.648 0.616 0.618
OpenBookQA 0.380 0.400 0.400
PiQA 0.768 0.763 0.765
Winogrande 0.636 0.639 0.634
Avg (7) 0.5559 0.5527 0.5521
The brain‑stormed module consistently improves performance on ARC‑easy, HellaSwag and PiQA, while matching or slightly underperforming on the other tasks. The overall average performance is +0.0038 (+0.4 %) over the non‑brainstormed baselines.
This model Qwen3-42B-A3B-2507-Thinking-Abliterated-uncensored-TOTAL-RECALL-v2-Medium-MASTER-CODER-q6-mlx was converted to MLX format from DavidAU/Qwen3-42B-A3B-2507-Thinking-Abliterated-uncensored-TOTAL-RECALL-v2-Medium-MASTER-CODER using mlx-lm version 0.26.3.
pip install mlx-lm
from mlx_lm import load, generate
model, tokenizer = load("Qwen3-42B-A3B-2507-Thinking-Abliterated-uncensored-TOTAL-RECALL-v2-Medium-MASTER-CODER-q6-mlx")
prompt = "hello"
if tokenizer.chat_template is not None:
messages = [{"role": "user", "content": prompt}]
prompt = tokenizer.apply_chat_template(
messages, add_generation_prompt=True
)
response = generate(model, tokenizer, prompt=prompt, verbose=True)
Base model
Qwen/Qwen3-30B-A3B-Thinking-2507