Delete uvr5_pack
Browse files- uvr5_pack/__pycache__/utils.cpython-39.pyc +0 -0
- uvr5_pack/lib_v5/__pycache__/layers_123821KB.cpython-39.pyc +0 -0
- uvr5_pack/lib_v5/__pycache__/model_param_init.cpython-39.pyc +0 -0
- uvr5_pack/lib_v5/__pycache__/nets_61968KB.cpython-39.pyc +0 -0
- uvr5_pack/lib_v5/__pycache__/spec_utils.cpython-39.pyc +0 -0
- uvr5_pack/lib_v5/dataset.py +0 -170
- uvr5_pack/lib_v5/layers.py +0 -116
- uvr5_pack/lib_v5/layers_123812KB .py +0 -116
- uvr5_pack/lib_v5/layers_123821KB.py +0 -116
- uvr5_pack/lib_v5/layers_33966KB.py +0 -122
- uvr5_pack/lib_v5/layers_537227KB.py +0 -122
- uvr5_pack/lib_v5/layers_537238KB.py +0 -122
- uvr5_pack/lib_v5/model_param_init.py +0 -60
- uvr5_pack/lib_v5/modelparams/1band_sr16000_hl512.json +0 -19
- uvr5_pack/lib_v5/modelparams/1band_sr32000_hl512.json +0 -19
- uvr5_pack/lib_v5/modelparams/1band_sr33075_hl384.json +0 -19
- uvr5_pack/lib_v5/modelparams/1band_sr44100_hl1024.json +0 -19
- uvr5_pack/lib_v5/modelparams/1band_sr44100_hl256.json +0 -19
- uvr5_pack/lib_v5/modelparams/1band_sr44100_hl512.json +0 -19
- uvr5_pack/lib_v5/modelparams/1band_sr44100_hl512_cut.json +0 -19
- uvr5_pack/lib_v5/modelparams/2band_32000.json +0 -30
- uvr5_pack/lib_v5/modelparams/2band_44100_lofi.json +0 -30
- uvr5_pack/lib_v5/modelparams/2band_48000.json +0 -30
- uvr5_pack/lib_v5/modelparams/3band_44100.json +0 -42
- uvr5_pack/lib_v5/modelparams/3band_44100_mid.json +0 -43
- uvr5_pack/lib_v5/modelparams/3band_44100_msb2.json +0 -43
- uvr5_pack/lib_v5/modelparams/4band_44100.json +0 -54
- uvr5_pack/lib_v5/modelparams/4band_44100_mid.json +0 -55
- uvr5_pack/lib_v5/modelparams/4band_44100_msb.json +0 -55
- uvr5_pack/lib_v5/modelparams/4band_44100_msb2.json +0 -55
- uvr5_pack/lib_v5/modelparams/4band_44100_reverse.json +0 -55
- uvr5_pack/lib_v5/modelparams/4band_44100_sw.json +0 -55
- uvr5_pack/lib_v5/modelparams/4band_v2.json +0 -54
- uvr5_pack/lib_v5/modelparams/4band_v2_sn.json +0 -55
- uvr5_pack/lib_v5/modelparams/ensemble.json +0 -43
- uvr5_pack/lib_v5/nets.py +0 -113
- uvr5_pack/lib_v5/nets_123812KB.py +0 -112
- uvr5_pack/lib_v5/nets_123821KB.py +0 -112
- uvr5_pack/lib_v5/nets_33966KB.py +0 -112
- uvr5_pack/lib_v5/nets_537227KB.py +0 -113
- uvr5_pack/lib_v5/nets_537238KB.py +0 -113
- uvr5_pack/lib_v5/nets_61968KB.py +0 -112
- uvr5_pack/lib_v5/spec_utils.py +0 -485
- uvr5_pack/utils.py +0 -242
uvr5_pack/__pycache__/utils.cpython-39.pyc
DELETED
Binary file (6.87 kB)
|
|
uvr5_pack/lib_v5/__pycache__/layers_123821KB.cpython-39.pyc
DELETED
Binary file (4.14 kB)
|
|
uvr5_pack/lib_v5/__pycache__/model_param_init.cpython-39.pyc
DELETED
Binary file (1.63 kB)
|
|
uvr5_pack/lib_v5/__pycache__/nets_61968KB.cpython-39.pyc
DELETED
Binary file (3.46 kB)
|
|
uvr5_pack/lib_v5/__pycache__/spec_utils.cpython-39.pyc
DELETED
Binary file (13.3 kB)
|
|
uvr5_pack/lib_v5/dataset.py
DELETED
@@ -1,170 +0,0 @@
|
|
1 |
-
import os
|
2 |
-
import random
|
3 |
-
|
4 |
-
import numpy as np
|
5 |
-
import torch
|
6 |
-
import torch.utils.data
|
7 |
-
from tqdm import tqdm
|
8 |
-
|
9 |
-
from uvr5_pack.lib_v5 import spec_utils
|
10 |
-
|
11 |
-
|
12 |
-
class VocalRemoverValidationSet(torch.utils.data.Dataset):
|
13 |
-
|
14 |
-
def __init__(self, patch_list):
|
15 |
-
self.patch_list = patch_list
|
16 |
-
|
17 |
-
def __len__(self):
|
18 |
-
return len(self.patch_list)
|
19 |
-
|
20 |
-
def __getitem__(self, idx):
|
21 |
-
path = self.patch_list[idx]
|
22 |
-
data = np.load(path)
|
23 |
-
|
24 |
-
X, y = data['X'], data['y']
|
25 |
-
|
26 |
-
X_mag = np.abs(X)
|
27 |
-
y_mag = np.abs(y)
|
28 |
-
|
29 |
-
return X_mag, y_mag
|
30 |
-
|
31 |
-
|
32 |
-
def make_pair(mix_dir, inst_dir):
|
33 |
-
input_exts = ['.wav', '.m4a', '.mp3', '.mp4', '.flac']
|
34 |
-
|
35 |
-
X_list = sorted([
|
36 |
-
os.path.join(mix_dir, fname)
|
37 |
-
for fname in os.listdir(mix_dir)
|
38 |
-
if os.path.splitext(fname)[1] in input_exts])
|
39 |
-
y_list = sorted([
|
40 |
-
os.path.join(inst_dir, fname)
|
41 |
-
for fname in os.listdir(inst_dir)
|
42 |
-
if os.path.splitext(fname)[1] in input_exts])
|
43 |
-
|
44 |
-
filelist = list(zip(X_list, y_list))
|
45 |
-
|
46 |
-
return filelist
|
47 |
-
|
48 |
-
|
49 |
-
def train_val_split(dataset_dir, split_mode, val_rate, val_filelist):
|
50 |
-
if split_mode == 'random':
|
51 |
-
filelist = make_pair(
|
52 |
-
os.path.join(dataset_dir, 'mixtures'),
|
53 |
-
os.path.join(dataset_dir, 'instruments'))
|
54 |
-
|
55 |
-
random.shuffle(filelist)
|
56 |
-
|
57 |
-
if len(val_filelist) == 0:
|
58 |
-
val_size = int(len(filelist) * val_rate)
|
59 |
-
train_filelist = filelist[:-val_size]
|
60 |
-
val_filelist = filelist[-val_size:]
|
61 |
-
else:
|
62 |
-
train_filelist = [
|
63 |
-
pair for pair in filelist
|
64 |
-
if list(pair) not in val_filelist]
|
65 |
-
elif split_mode == 'subdirs':
|
66 |
-
if len(val_filelist) != 0:
|
67 |
-
raise ValueError('The `val_filelist` option is not available in `subdirs` mode')
|
68 |
-
|
69 |
-
train_filelist = make_pair(
|
70 |
-
os.path.join(dataset_dir, 'training/mixtures'),
|
71 |
-
os.path.join(dataset_dir, 'training/instruments'))
|
72 |
-
|
73 |
-
val_filelist = make_pair(
|
74 |
-
os.path.join(dataset_dir, 'validation/mixtures'),
|
75 |
-
os.path.join(dataset_dir, 'validation/instruments'))
|
76 |
-
|
77 |
-
return train_filelist, val_filelist
|
78 |
-
|
79 |
-
|
80 |
-
def augment(X, y, reduction_rate, reduction_mask, mixup_rate, mixup_alpha):
|
81 |
-
perm = np.random.permutation(len(X))
|
82 |
-
for i, idx in enumerate(tqdm(perm)):
|
83 |
-
if np.random.uniform() < reduction_rate:
|
84 |
-
y[idx] = spec_utils.reduce_vocal_aggressively(X[idx], y[idx], reduction_mask)
|
85 |
-
|
86 |
-
if np.random.uniform() < 0.5:
|
87 |
-
# swap channel
|
88 |
-
X[idx] = X[idx, ::-1]
|
89 |
-
y[idx] = y[idx, ::-1]
|
90 |
-
if np.random.uniform() < 0.02:
|
91 |
-
# mono
|
92 |
-
X[idx] = X[idx].mean(axis=0, keepdims=True)
|
93 |
-
y[idx] = y[idx].mean(axis=0, keepdims=True)
|
94 |
-
if np.random.uniform() < 0.02:
|
95 |
-
# inst
|
96 |
-
X[idx] = y[idx]
|
97 |
-
|
98 |
-
if np.random.uniform() < mixup_rate and i < len(perm) - 1:
|
99 |
-
lam = np.random.beta(mixup_alpha, mixup_alpha)
|
100 |
-
X[idx] = lam * X[idx] + (1 - lam) * X[perm[i + 1]]
|
101 |
-
y[idx] = lam * y[idx] + (1 - lam) * y[perm[i + 1]]
|
102 |
-
|
103 |
-
return X, y
|
104 |
-
|
105 |
-
|
106 |
-
def make_padding(width, cropsize, offset):
|
107 |
-
left = offset
|
108 |
-
roi_size = cropsize - left * 2
|
109 |
-
if roi_size == 0:
|
110 |
-
roi_size = cropsize
|
111 |
-
right = roi_size - (width % roi_size) + left
|
112 |
-
|
113 |
-
return left, right, roi_size
|
114 |
-
|
115 |
-
|
116 |
-
def make_training_set(filelist, cropsize, patches, sr, hop_length, n_fft, offset):
|
117 |
-
len_dataset = patches * len(filelist)
|
118 |
-
|
119 |
-
X_dataset = np.zeros(
|
120 |
-
(len_dataset, 2, n_fft // 2 + 1, cropsize), dtype=np.complex64)
|
121 |
-
y_dataset = np.zeros(
|
122 |
-
(len_dataset, 2, n_fft // 2 + 1, cropsize), dtype=np.complex64)
|
123 |
-
|
124 |
-
for i, (X_path, y_path) in enumerate(tqdm(filelist)):
|
125 |
-
X, y = spec_utils.cache_or_load(X_path, y_path, sr, hop_length, n_fft)
|
126 |
-
coef = np.max([np.abs(X).max(), np.abs(y).max()])
|
127 |
-
X, y = X / coef, y / coef
|
128 |
-
|
129 |
-
l, r, roi_size = make_padding(X.shape[2], cropsize, offset)
|
130 |
-
X_pad = np.pad(X, ((0, 0), (0, 0), (l, r)), mode='constant')
|
131 |
-
y_pad = np.pad(y, ((0, 0), (0, 0), (l, r)), mode='constant')
|
132 |
-
|
133 |
-
starts = np.random.randint(0, X_pad.shape[2] - cropsize, patches)
|
134 |
-
ends = starts + cropsize
|
135 |
-
for j in range(patches):
|
136 |
-
idx = i * patches + j
|
137 |
-
X_dataset[idx] = X_pad[:, :, starts[j]:ends[j]]
|
138 |
-
y_dataset[idx] = y_pad[:, :, starts[j]:ends[j]]
|
139 |
-
|
140 |
-
return X_dataset, y_dataset
|
141 |
-
|
142 |
-
|
143 |
-
def make_validation_set(filelist, cropsize, sr, hop_length, n_fft, offset):
|
144 |
-
patch_list = []
|
145 |
-
patch_dir = 'cs{}_sr{}_hl{}_nf{}_of{}'.format(cropsize, sr, hop_length, n_fft, offset)
|
146 |
-
os.makedirs(patch_dir, exist_ok=True)
|
147 |
-
|
148 |
-
for i, (X_path, y_path) in enumerate(tqdm(filelist)):
|
149 |
-
basename = os.path.splitext(os.path.basename(X_path))[0]
|
150 |
-
|
151 |
-
X, y = spec_utils.cache_or_load(X_path, y_path, sr, hop_length, n_fft)
|
152 |
-
coef = np.max([np.abs(X).max(), np.abs(y).max()])
|
153 |
-
X, y = X / coef, y / coef
|
154 |
-
|
155 |
-
l, r, roi_size = make_padding(X.shape[2], cropsize, offset)
|
156 |
-
X_pad = np.pad(X, ((0, 0), (0, 0), (l, r)), mode='constant')
|
157 |
-
y_pad = np.pad(y, ((0, 0), (0, 0), (l, r)), mode='constant')
|
158 |
-
|
159 |
-
len_dataset = int(np.ceil(X.shape[2] / roi_size))
|
160 |
-
for j in range(len_dataset):
|
161 |
-
outpath = os.path.join(patch_dir, '{}_p{}.npz'.format(basename, j))
|
162 |
-
start = j * roi_size
|
163 |
-
if not os.path.exists(outpath):
|
164 |
-
np.savez(
|
165 |
-
outpath,
|
166 |
-
X=X_pad[:, :, start:start + cropsize],
|
167 |
-
y=y_pad[:, :, start:start + cropsize])
|
168 |
-
patch_list.append(outpath)
|
169 |
-
|
170 |
-
return VocalRemoverValidationSet(patch_list)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
uvr5_pack/lib_v5/layers.py
DELETED
@@ -1,116 +0,0 @@
|
|
1 |
-
import torch
|
2 |
-
from torch import nn
|
3 |
-
import torch.nn.functional as F
|
4 |
-
|
5 |
-
from uvr5_pack.lib_v5 import spec_utils
|
6 |
-
|
7 |
-
|
8 |
-
class Conv2DBNActiv(nn.Module):
|
9 |
-
|
10 |
-
def __init__(self, nin, nout, ksize=3, stride=1, pad=1, dilation=1, activ=nn.ReLU):
|
11 |
-
super(Conv2DBNActiv, self).__init__()
|
12 |
-
self.conv = nn.Sequential(
|
13 |
-
nn.Conv2d(
|
14 |
-
nin, nout,
|
15 |
-
kernel_size=ksize,
|
16 |
-
stride=stride,
|
17 |
-
padding=pad,
|
18 |
-
dilation=dilation,
|
19 |
-
bias=False),
|
20 |
-
nn.BatchNorm2d(nout),
|
21 |
-
activ()
|
22 |
-
)
|
23 |
-
|
24 |
-
def __call__(self, x):
|
25 |
-
return self.conv(x)
|
26 |
-
|
27 |
-
|
28 |
-
class SeperableConv2DBNActiv(nn.Module):
|
29 |
-
|
30 |
-
def __init__(self, nin, nout, ksize=3, stride=1, pad=1, dilation=1, activ=nn.ReLU):
|
31 |
-
super(SeperableConv2DBNActiv, self).__init__()
|
32 |
-
self.conv = nn.Sequential(
|
33 |
-
nn.Conv2d(
|
34 |
-
nin, nin,
|
35 |
-
kernel_size=ksize,
|
36 |
-
stride=stride,
|
37 |
-
padding=pad,
|
38 |
-
dilation=dilation,
|
39 |
-
groups=nin,
|
40 |
-
bias=False),
|
41 |
-
nn.Conv2d(
|
42 |
-
nin, nout,
|
43 |
-
kernel_size=1,
|
44 |
-
bias=False),
|
45 |
-
nn.BatchNorm2d(nout),
|
46 |
-
activ()
|
47 |
-
)
|
48 |
-
|
49 |
-
def __call__(self, x):
|
50 |
-
return self.conv(x)
|
51 |
-
|
52 |
-
|
53 |
-
class Encoder(nn.Module):
|
54 |
-
|
55 |
-
def __init__(self, nin, nout, ksize=3, stride=1, pad=1, activ=nn.LeakyReLU):
|
56 |
-
super(Encoder, self).__init__()
|
57 |
-
self.conv1 = Conv2DBNActiv(nin, nout, ksize, 1, pad, activ=activ)
|
58 |
-
self.conv2 = Conv2DBNActiv(nout, nout, ksize, stride, pad, activ=activ)
|
59 |
-
|
60 |
-
def __call__(self, x):
|
61 |
-
skip = self.conv1(x)
|
62 |
-
h = self.conv2(skip)
|
63 |
-
|
64 |
-
return h, skip
|
65 |
-
|
66 |
-
|
67 |
-
class Decoder(nn.Module):
|
68 |
-
|
69 |
-
def __init__(self, nin, nout, ksize=3, stride=1, pad=1, activ=nn.ReLU, dropout=False):
|
70 |
-
super(Decoder, self).__init__()
|
71 |
-
self.conv = Conv2DBNActiv(nin, nout, ksize, 1, pad, activ=activ)
|
72 |
-
self.dropout = nn.Dropout2d(0.1) if dropout else None
|
73 |
-
|
74 |
-
def __call__(self, x, skip=None):
|
75 |
-
x = F.interpolate(x, scale_factor=2, mode='bilinear', align_corners=True)
|
76 |
-
if skip is not None:
|
77 |
-
skip = spec_utils.crop_center(skip, x)
|
78 |
-
x = torch.cat([x, skip], dim=1)
|
79 |
-
h = self.conv(x)
|
80 |
-
|
81 |
-
if self.dropout is not None:
|
82 |
-
h = self.dropout(h)
|
83 |
-
|
84 |
-
return h
|
85 |
-
|
86 |
-
|
87 |
-
class ASPPModule(nn.Module):
|
88 |
-
|
89 |
-
def __init__(self, nin, nout, dilations=(4, 8, 16), activ=nn.ReLU):
|
90 |
-
super(ASPPModule, self).__init__()
|
91 |
-
self.conv1 = nn.Sequential(
|
92 |
-
nn.AdaptiveAvgPool2d((1, None)),
|
93 |
-
Conv2DBNActiv(nin, nin, 1, 1, 0, activ=activ)
|
94 |
-
)
|
95 |
-
self.conv2 = Conv2DBNActiv(nin, nin, 1, 1, 0, activ=activ)
|
96 |
-
self.conv3 = SeperableConv2DBNActiv(
|
97 |
-
nin, nin, 3, 1, dilations[0], dilations[0], activ=activ)
|
98 |
-
self.conv4 = SeperableConv2DBNActiv(
|
99 |
-
nin, nin, 3, 1, dilations[1], dilations[1], activ=activ)
|
100 |
-
self.conv5 = SeperableConv2DBNActiv(
|
101 |
-
nin, nin, 3, 1, dilations[2], dilations[2], activ=activ)
|
102 |
-
self.bottleneck = nn.Sequential(
|
103 |
-
Conv2DBNActiv(nin * 5, nout, 1, 1, 0, activ=activ),
|
104 |
-
nn.Dropout2d(0.1)
|
105 |
-
)
|
106 |
-
|
107 |
-
def forward(self, x):
|
108 |
-
_, _, h, w = x.size()
|
109 |
-
feat1 = F.interpolate(self.conv1(x), size=(h, w), mode='bilinear', align_corners=True)
|
110 |
-
feat2 = self.conv2(x)
|
111 |
-
feat3 = self.conv3(x)
|
112 |
-
feat4 = self.conv4(x)
|
113 |
-
feat5 = self.conv5(x)
|
114 |
-
out = torch.cat((feat1, feat2, feat3, feat4, feat5), dim=1)
|
115 |
-
bottle = self.bottleneck(out)
|
116 |
-
return bottle
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
uvr5_pack/lib_v5/layers_123812KB .py
DELETED
@@ -1,116 +0,0 @@
|
|
1 |
-
import torch
|
2 |
-
from torch import nn
|
3 |
-
import torch.nn.functional as F
|
4 |
-
|
5 |
-
from uvr5_pack.lib_v5 import spec_utils
|
6 |
-
|
7 |
-
|
8 |
-
class Conv2DBNActiv(nn.Module):
|
9 |
-
|
10 |
-
def __init__(self, nin, nout, ksize=3, stride=1, pad=1, dilation=1, activ=nn.ReLU):
|
11 |
-
super(Conv2DBNActiv, self).__init__()
|
12 |
-
self.conv = nn.Sequential(
|
13 |
-
nn.Conv2d(
|
14 |
-
nin, nout,
|
15 |
-
kernel_size=ksize,
|
16 |
-
stride=stride,
|
17 |
-
padding=pad,
|
18 |
-
dilation=dilation,
|
19 |
-
bias=False),
|
20 |
-
nn.BatchNorm2d(nout),
|
21 |
-
activ()
|
22 |
-
)
|
23 |
-
|
24 |
-
def __call__(self, x):
|
25 |
-
return self.conv(x)
|
26 |
-
|
27 |
-
|
28 |
-
class SeperableConv2DBNActiv(nn.Module):
|
29 |
-
|
30 |
-
def __init__(self, nin, nout, ksize=3, stride=1, pad=1, dilation=1, activ=nn.ReLU):
|
31 |
-
super(SeperableConv2DBNActiv, self).__init__()
|
32 |
-
self.conv = nn.Sequential(
|
33 |
-
nn.Conv2d(
|
34 |
-
nin, nin,
|
35 |
-
kernel_size=ksize,
|
36 |
-
stride=stride,
|
37 |
-
padding=pad,
|
38 |
-
dilation=dilation,
|
39 |
-
groups=nin,
|
40 |
-
bias=False),
|
41 |
-
nn.Conv2d(
|
42 |
-
nin, nout,
|
43 |
-
kernel_size=1,
|
44 |
-
bias=False),
|
45 |
-
nn.BatchNorm2d(nout),
|
46 |
-
activ()
|
47 |
-
)
|
48 |
-
|
49 |
-
def __call__(self, x):
|
50 |
-
return self.conv(x)
|
51 |
-
|
52 |
-
|
53 |
-
class Encoder(nn.Module):
|
54 |
-
|
55 |
-
def __init__(self, nin, nout, ksize=3, stride=1, pad=1, activ=nn.LeakyReLU):
|
56 |
-
super(Encoder, self).__init__()
|
57 |
-
self.conv1 = Conv2DBNActiv(nin, nout, ksize, 1, pad, activ=activ)
|
58 |
-
self.conv2 = Conv2DBNActiv(nout, nout, ksize, stride, pad, activ=activ)
|
59 |
-
|
60 |
-
def __call__(self, x):
|
61 |
-
skip = self.conv1(x)
|
62 |
-
h = self.conv2(skip)
|
63 |
-
|
64 |
-
return h, skip
|
65 |
-
|
66 |
-
|
67 |
-
class Decoder(nn.Module):
|
68 |
-
|
69 |
-
def __init__(self, nin, nout, ksize=3, stride=1, pad=1, activ=nn.ReLU, dropout=False):
|
70 |
-
super(Decoder, self).__init__()
|
71 |
-
self.conv = Conv2DBNActiv(nin, nout, ksize, 1, pad, activ=activ)
|
72 |
-
self.dropout = nn.Dropout2d(0.1) if dropout else None
|
73 |
-
|
74 |
-
def __call__(self, x, skip=None):
|
75 |
-
x = F.interpolate(x, scale_factor=2, mode='bilinear', align_corners=True)
|
76 |
-
if skip is not None:
|
77 |
-
skip = spec_utils.crop_center(skip, x)
|
78 |
-
x = torch.cat([x, skip], dim=1)
|
79 |
-
h = self.conv(x)
|
80 |
-
|
81 |
-
if self.dropout is not None:
|
82 |
-
h = self.dropout(h)
|
83 |
-
|
84 |
-
return h
|
85 |
-
|
86 |
-
|
87 |
-
class ASPPModule(nn.Module):
|
88 |
-
|
89 |
-
def __init__(self, nin, nout, dilations=(4, 8, 16), activ=nn.ReLU):
|
90 |
-
super(ASPPModule, self).__init__()
|
91 |
-
self.conv1 = nn.Sequential(
|
92 |
-
nn.AdaptiveAvgPool2d((1, None)),
|
93 |
-
Conv2DBNActiv(nin, nin, 1, 1, 0, activ=activ)
|
94 |
-
)
|
95 |
-
self.conv2 = Conv2DBNActiv(nin, nin, 1, 1, 0, activ=activ)
|
96 |
-
self.conv3 = SeperableConv2DBNActiv(
|
97 |
-
nin, nin, 3, 1, dilations[0], dilations[0], activ=activ)
|
98 |
-
self.conv4 = SeperableConv2DBNActiv(
|
99 |
-
nin, nin, 3, 1, dilations[1], dilations[1], activ=activ)
|
100 |
-
self.conv5 = SeperableConv2DBNActiv(
|
101 |
-
nin, nin, 3, 1, dilations[2], dilations[2], activ=activ)
|
102 |
-
self.bottleneck = nn.Sequential(
|
103 |
-
Conv2DBNActiv(nin * 5, nout, 1, 1, 0, activ=activ),
|
104 |
-
nn.Dropout2d(0.1)
|
105 |
-
)
|
106 |
-
|
107 |
-
def forward(self, x):
|
108 |
-
_, _, h, w = x.size()
|
109 |
-
feat1 = F.interpolate(self.conv1(x), size=(h, w), mode='bilinear', align_corners=True)
|
110 |
-
feat2 = self.conv2(x)
|
111 |
-
feat3 = self.conv3(x)
|
112 |
-
feat4 = self.conv4(x)
|
113 |
-
feat5 = self.conv5(x)
|
114 |
-
out = torch.cat((feat1, feat2, feat3, feat4, feat5), dim=1)
|
115 |
-
bottle = self.bottleneck(out)
|
116 |
-
return bottle
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
uvr5_pack/lib_v5/layers_123821KB.py
DELETED
@@ -1,116 +0,0 @@
|
|
1 |
-
import torch
|
2 |
-
from torch import nn
|
3 |
-
import torch.nn.functional as F
|
4 |
-
|
5 |
-
from uvr5_pack.lib_v5 import spec_utils
|
6 |
-
|
7 |
-
|
8 |
-
class Conv2DBNActiv(nn.Module):
|
9 |
-
|
10 |
-
def __init__(self, nin, nout, ksize=3, stride=1, pad=1, dilation=1, activ=nn.ReLU):
|
11 |
-
super(Conv2DBNActiv, self).__init__()
|
12 |
-
self.conv = nn.Sequential(
|
13 |
-
nn.Conv2d(
|
14 |
-
nin, nout,
|
15 |
-
kernel_size=ksize,
|
16 |
-
stride=stride,
|
17 |
-
padding=pad,
|
18 |
-
dilation=dilation,
|
19 |
-
bias=False),
|
20 |
-
nn.BatchNorm2d(nout),
|
21 |
-
activ()
|
22 |
-
)
|
23 |
-
|
24 |
-
def __call__(self, x):
|
25 |
-
return self.conv(x)
|
26 |
-
|
27 |
-
|
28 |
-
class SeperableConv2DBNActiv(nn.Module):
|
29 |
-
|
30 |
-
def __init__(self, nin, nout, ksize=3, stride=1, pad=1, dilation=1, activ=nn.ReLU):
|
31 |
-
super(SeperableConv2DBNActiv, self).__init__()
|
32 |
-
self.conv = nn.Sequential(
|
33 |
-
nn.Conv2d(
|
34 |
-
nin, nin,
|
35 |
-
kernel_size=ksize,
|
36 |
-
stride=stride,
|
37 |
-
padding=pad,
|
38 |
-
dilation=dilation,
|
39 |
-
groups=nin,
|
40 |
-
bias=False),
|
41 |
-
nn.Conv2d(
|
42 |
-
nin, nout,
|
43 |
-
kernel_size=1,
|
44 |
-
bias=False),
|
45 |
-
nn.BatchNorm2d(nout),
|
46 |
-
activ()
|
47 |
-
)
|
48 |
-
|
49 |
-
def __call__(self, x):
|
50 |
-
return self.conv(x)
|
51 |
-
|
52 |
-
|
53 |
-
class Encoder(nn.Module):
|
54 |
-
|
55 |
-
def __init__(self, nin, nout, ksize=3, stride=1, pad=1, activ=nn.LeakyReLU):
|
56 |
-
super(Encoder, self).__init__()
|
57 |
-
self.conv1 = Conv2DBNActiv(nin, nout, ksize, 1, pad, activ=activ)
|
58 |
-
self.conv2 = Conv2DBNActiv(nout, nout, ksize, stride, pad, activ=activ)
|
59 |
-
|
60 |
-
def __call__(self, x):
|
61 |
-
skip = self.conv1(x)
|
62 |
-
h = self.conv2(skip)
|
63 |
-
|
64 |
-
return h, skip
|
65 |
-
|
66 |
-
|
67 |
-
class Decoder(nn.Module):
|
68 |
-
|
69 |
-
def __init__(self, nin, nout, ksize=3, stride=1, pad=1, activ=nn.ReLU, dropout=False):
|
70 |
-
super(Decoder, self).__init__()
|
71 |
-
self.conv = Conv2DBNActiv(nin, nout, ksize, 1, pad, activ=activ)
|
72 |
-
self.dropout = nn.Dropout2d(0.1) if dropout else None
|
73 |
-
|
74 |
-
def __call__(self, x, skip=None):
|
75 |
-
x = F.interpolate(x, scale_factor=2, mode='bilinear', align_corners=True)
|
76 |
-
if skip is not None:
|
77 |
-
skip = spec_utils.crop_center(skip, x)
|
78 |
-
x = torch.cat([x, skip], dim=1)
|
79 |
-
h = self.conv(x)
|
80 |
-
|
81 |
-
if self.dropout is not None:
|
82 |
-
h = self.dropout(h)
|
83 |
-
|
84 |
-
return h
|
85 |
-
|
86 |
-
|
87 |
-
class ASPPModule(nn.Module):
|
88 |
-
|
89 |
-
def __init__(self, nin, nout, dilations=(4, 8, 16), activ=nn.ReLU):
|
90 |
-
super(ASPPModule, self).__init__()
|
91 |
-
self.conv1 = nn.Sequential(
|
92 |
-
nn.AdaptiveAvgPool2d((1, None)),
|
93 |
-
Conv2DBNActiv(nin, nin, 1, 1, 0, activ=activ)
|
94 |
-
)
|
95 |
-
self.conv2 = Conv2DBNActiv(nin, nin, 1, 1, 0, activ=activ)
|
96 |
-
self.conv3 = SeperableConv2DBNActiv(
|
97 |
-
nin, nin, 3, 1, dilations[0], dilations[0], activ=activ)
|
98 |
-
self.conv4 = SeperableConv2DBNActiv(
|
99 |
-
nin, nin, 3, 1, dilations[1], dilations[1], activ=activ)
|
100 |
-
self.conv5 = SeperableConv2DBNActiv(
|
101 |
-
nin, nin, 3, 1, dilations[2], dilations[2], activ=activ)
|
102 |
-
self.bottleneck = nn.Sequential(
|
103 |
-
Conv2DBNActiv(nin * 5, nout, 1, 1, 0, activ=activ),
|
104 |
-
nn.Dropout2d(0.1)
|
105 |
-
)
|
106 |
-
|
107 |
-
def forward(self, x):
|
108 |
-
_, _, h, w = x.size()
|
109 |
-
feat1 = F.interpolate(self.conv1(x), size=(h, w), mode='bilinear', align_corners=True)
|
110 |
-
feat2 = self.conv2(x)
|
111 |
-
feat3 = self.conv3(x)
|
112 |
-
feat4 = self.conv4(x)
|
113 |
-
feat5 = self.conv5(x)
|
114 |
-
out = torch.cat((feat1, feat2, feat3, feat4, feat5), dim=1)
|
115 |
-
bottle = self.bottleneck(out)
|
116 |
-
return bottle
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
uvr5_pack/lib_v5/layers_33966KB.py
DELETED
@@ -1,122 +0,0 @@
|
|
1 |
-
import torch
|
2 |
-
from torch import nn
|
3 |
-
import torch.nn.functional as F
|
4 |
-
|
5 |
-
from uvr5_pack.lib_v5 import spec_utils
|
6 |
-
|
7 |
-
|
8 |
-
class Conv2DBNActiv(nn.Module):
|
9 |
-
|
10 |
-
def __init__(self, nin, nout, ksize=3, stride=1, pad=1, dilation=1, activ=nn.ReLU):
|
11 |
-
super(Conv2DBNActiv, self).__init__()
|
12 |
-
self.conv = nn.Sequential(
|
13 |
-
nn.Conv2d(
|
14 |
-
nin, nout,
|
15 |
-
kernel_size=ksize,
|
16 |
-
stride=stride,
|
17 |
-
padding=pad,
|
18 |
-
dilation=dilation,
|
19 |
-
bias=False),
|
20 |
-
nn.BatchNorm2d(nout),
|
21 |
-
activ()
|
22 |
-
)
|
23 |
-
|
24 |
-
def __call__(self, x):
|
25 |
-
return self.conv(x)
|
26 |
-
|
27 |
-
|
28 |
-
class SeperableConv2DBNActiv(nn.Module):
|
29 |
-
|
30 |
-
def __init__(self, nin, nout, ksize=3, stride=1, pad=1, dilation=1, activ=nn.ReLU):
|
31 |
-
super(SeperableConv2DBNActiv, self).__init__()
|
32 |
-
self.conv = nn.Sequential(
|
33 |
-
nn.Conv2d(
|
34 |
-
nin, nin,
|
35 |
-
kernel_size=ksize,
|
36 |
-
stride=stride,
|
37 |
-
padding=pad,
|
38 |
-
dilation=dilation,
|
39 |
-
groups=nin,
|
40 |
-
bias=False),
|
41 |
-
nn.Conv2d(
|
42 |
-
nin, nout,
|
43 |
-
kernel_size=1,
|
44 |
-
bias=False),
|
45 |
-
nn.BatchNorm2d(nout),
|
46 |
-
activ()
|
47 |
-
)
|
48 |
-
|
49 |
-
def __call__(self, x):
|
50 |
-
return self.conv(x)
|
51 |
-
|
52 |
-
|
53 |
-
class Encoder(nn.Module):
|
54 |
-
|
55 |
-
def __init__(self, nin, nout, ksize=3, stride=1, pad=1, activ=nn.LeakyReLU):
|
56 |
-
super(Encoder, self).__init__()
|
57 |
-
self.conv1 = Conv2DBNActiv(nin, nout, ksize, 1, pad, activ=activ)
|
58 |
-
self.conv2 = Conv2DBNActiv(nout, nout, ksize, stride, pad, activ=activ)
|
59 |
-
|
60 |
-
def __call__(self, x):
|
61 |
-
skip = self.conv1(x)
|
62 |
-
h = self.conv2(skip)
|
63 |
-
|
64 |
-
return h, skip
|
65 |
-
|
66 |
-
|
67 |
-
class Decoder(nn.Module):
|
68 |
-
|
69 |
-
def __init__(self, nin, nout, ksize=3, stride=1, pad=1, activ=nn.ReLU, dropout=False):
|
70 |
-
super(Decoder, self).__init__()
|
71 |
-
self.conv = Conv2DBNActiv(nin, nout, ksize, 1, pad, activ=activ)
|
72 |
-
self.dropout = nn.Dropout2d(0.1) if dropout else None
|
73 |
-
|
74 |
-
def __call__(self, x, skip=None):
|
75 |
-
x = F.interpolate(x, scale_factor=2, mode='bilinear', align_corners=True)
|
76 |
-
if skip is not None:
|
77 |
-
skip = spec_utils.crop_center(skip, x)
|
78 |
-
x = torch.cat([x, skip], dim=1)
|
79 |
-
h = self.conv(x)
|
80 |
-
|
81 |
-
if self.dropout is not None:
|
82 |
-
h = self.dropout(h)
|
83 |
-
|
84 |
-
return h
|
85 |
-
|
86 |
-
|
87 |
-
class ASPPModule(nn.Module):
|
88 |
-
|
89 |
-
def __init__(self, nin, nout, dilations=(4, 8, 16, 32, 64), activ=nn.ReLU):
|
90 |
-
super(ASPPModule, self).__init__()
|
91 |
-
self.conv1 = nn.Sequential(
|
92 |
-
nn.AdaptiveAvgPool2d((1, None)),
|
93 |
-
Conv2DBNActiv(nin, nin, 1, 1, 0, activ=activ)
|
94 |
-
)
|
95 |
-
self.conv2 = Conv2DBNActiv(nin, nin, 1, 1, 0, activ=activ)
|
96 |
-
self.conv3 = SeperableConv2DBNActiv(
|
97 |
-
nin, nin, 3, 1, dilations[0], dilations[0], activ=activ)
|
98 |
-
self.conv4 = SeperableConv2DBNActiv(
|
99 |
-
nin, nin, 3, 1, dilations[1], dilations[1], activ=activ)
|
100 |
-
self.conv5 = SeperableConv2DBNActiv(
|
101 |
-
nin, nin, 3, 1, dilations[2], dilations[2], activ=activ)
|
102 |
-
self.conv6 = SeperableConv2DBNActiv(
|
103 |
-
nin, nin, 3, 1, dilations[2], dilations[2], activ=activ)
|
104 |
-
self.conv7 = SeperableConv2DBNActiv(
|
105 |
-
nin, nin, 3, 1, dilations[2], dilations[2], activ=activ)
|
106 |
-
self.bottleneck = nn.Sequential(
|
107 |
-
Conv2DBNActiv(nin * 7, nout, 1, 1, 0, activ=activ),
|
108 |
-
nn.Dropout2d(0.1)
|
109 |
-
)
|
110 |
-
|
111 |
-
def forward(self, x):
|
112 |
-
_, _, h, w = x.size()
|
113 |
-
feat1 = F.interpolate(self.conv1(x), size=(h, w), mode='bilinear', align_corners=True)
|
114 |
-
feat2 = self.conv2(x)
|
115 |
-
feat3 = self.conv3(x)
|
116 |
-
feat4 = self.conv4(x)
|
117 |
-
feat5 = self.conv5(x)
|
118 |
-
feat6 = self.conv6(x)
|
119 |
-
feat7 = self.conv7(x)
|
120 |
-
out = torch.cat((feat1, feat2, feat3, feat4, feat5, feat6, feat7), dim=1)
|
121 |
-
bottle = self.bottleneck(out)
|
122 |
-
return bottle
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
uvr5_pack/lib_v5/layers_537227KB.py
DELETED
@@ -1,122 +0,0 @@
|
|
1 |
-
import torch
|
2 |
-
from torch import nn
|
3 |
-
import torch.nn.functional as F
|
4 |
-
|
5 |
-
from uvr5_pack.lib_v5 import spec_utils
|
6 |
-
|
7 |
-
|
8 |
-
class Conv2DBNActiv(nn.Module):
|
9 |
-
|
10 |
-
def __init__(self, nin, nout, ksize=3, stride=1, pad=1, dilation=1, activ=nn.ReLU):
|
11 |
-
super(Conv2DBNActiv, self).__init__()
|
12 |
-
self.conv = nn.Sequential(
|
13 |
-
nn.Conv2d(
|
14 |
-
nin, nout,
|
15 |
-
kernel_size=ksize,
|
16 |
-
stride=stride,
|
17 |
-
padding=pad,
|
18 |
-
dilation=dilation,
|
19 |
-
bias=False),
|
20 |
-
nn.BatchNorm2d(nout),
|
21 |
-
activ()
|
22 |
-
)
|
23 |
-
|
24 |
-
def __call__(self, x):
|
25 |
-
return self.conv(x)
|
26 |
-
|
27 |
-
|
28 |
-
class SeperableConv2DBNActiv(nn.Module):
|
29 |
-
|
30 |
-
def __init__(self, nin, nout, ksize=3, stride=1, pad=1, dilation=1, activ=nn.ReLU):
|
31 |
-
super(SeperableConv2DBNActiv, self).__init__()
|
32 |
-
self.conv = nn.Sequential(
|
33 |
-
nn.Conv2d(
|
34 |
-
nin, nin,
|
35 |
-
kernel_size=ksize,
|
36 |
-
stride=stride,
|
37 |
-
padding=pad,
|
38 |
-
dilation=dilation,
|
39 |
-
groups=nin,
|
40 |
-
bias=False),
|
41 |
-
nn.Conv2d(
|
42 |
-
nin, nout,
|
43 |
-
kernel_size=1,
|
44 |
-
bias=False),
|
45 |
-
nn.BatchNorm2d(nout),
|
46 |
-
activ()
|
47 |
-
)
|
48 |
-
|
49 |
-
def __call__(self, x):
|
50 |
-
return self.conv(x)
|
51 |
-
|
52 |
-
|
53 |
-
class Encoder(nn.Module):
|
54 |
-
|
55 |
-
def __init__(self, nin, nout, ksize=3, stride=1, pad=1, activ=nn.LeakyReLU):
|
56 |
-
super(Encoder, self).__init__()
|
57 |
-
self.conv1 = Conv2DBNActiv(nin, nout, ksize, 1, pad, activ=activ)
|
58 |
-
self.conv2 = Conv2DBNActiv(nout, nout, ksize, stride, pad, activ=activ)
|
59 |
-
|
60 |
-
def __call__(self, x):
|
61 |
-
skip = self.conv1(x)
|
62 |
-
h = self.conv2(skip)
|
63 |
-
|
64 |
-
return h, skip
|
65 |
-
|
66 |
-
|
67 |
-
class Decoder(nn.Module):
|
68 |
-
|
69 |
-
def __init__(self, nin, nout, ksize=3, stride=1, pad=1, activ=nn.ReLU, dropout=False):
|
70 |
-
super(Decoder, self).__init__()
|
71 |
-
self.conv = Conv2DBNActiv(nin, nout, ksize, 1, pad, activ=activ)
|
72 |
-
self.dropout = nn.Dropout2d(0.1) if dropout else None
|
73 |
-
|
74 |
-
def __call__(self, x, skip=None):
|
75 |
-
x = F.interpolate(x, scale_factor=2, mode='bilinear', align_corners=True)
|
76 |
-
if skip is not None:
|
77 |
-
skip = spec_utils.crop_center(skip, x)
|
78 |
-
x = torch.cat([x, skip], dim=1)
|
79 |
-
h = self.conv(x)
|
80 |
-
|
81 |
-
if self.dropout is not None:
|
82 |
-
h = self.dropout(h)
|
83 |
-
|
84 |
-
return h
|
85 |
-
|
86 |
-
|
87 |
-
class ASPPModule(nn.Module):
|
88 |
-
|
89 |
-
def __init__(self, nin, nout, dilations=(4, 8, 16, 32, 64), activ=nn.ReLU):
|
90 |
-
super(ASPPModule, self).__init__()
|
91 |
-
self.conv1 = nn.Sequential(
|
92 |
-
nn.AdaptiveAvgPool2d((1, None)),
|
93 |
-
Conv2DBNActiv(nin, nin, 1, 1, 0, activ=activ)
|
94 |
-
)
|
95 |
-
self.conv2 = Conv2DBNActiv(nin, nin, 1, 1, 0, activ=activ)
|
96 |
-
self.conv3 = SeperableConv2DBNActiv(
|
97 |
-
nin, nin, 3, 1, dilations[0], dilations[0], activ=activ)
|
98 |
-
self.conv4 = SeperableConv2DBNActiv(
|
99 |
-
nin, nin, 3, 1, dilations[1], dilations[1], activ=activ)
|
100 |
-
self.conv5 = SeperableConv2DBNActiv(
|
101 |
-
nin, nin, 3, 1, dilations[2], dilations[2], activ=activ)
|
102 |
-
self.conv6 = SeperableConv2DBNActiv(
|
103 |
-
nin, nin, 3, 1, dilations[2], dilations[2], activ=activ)
|
104 |
-
self.conv7 = SeperableConv2DBNActiv(
|
105 |
-
nin, nin, 3, 1, dilations[2], dilations[2], activ=activ)
|
106 |
-
self.bottleneck = nn.Sequential(
|
107 |
-
Conv2DBNActiv(nin * 7, nout, 1, 1, 0, activ=activ),
|
108 |
-
nn.Dropout2d(0.1)
|
109 |
-
)
|
110 |
-
|
111 |
-
def forward(self, x):
|
112 |
-
_, _, h, w = x.size()
|
113 |
-
feat1 = F.interpolate(self.conv1(x), size=(h, w), mode='bilinear', align_corners=True)
|
114 |
-
feat2 = self.conv2(x)
|
115 |
-
feat3 = self.conv3(x)
|
116 |
-
feat4 = self.conv4(x)
|
117 |
-
feat5 = self.conv5(x)
|
118 |
-
feat6 = self.conv6(x)
|
119 |
-
feat7 = self.conv7(x)
|
120 |
-
out = torch.cat((feat1, feat2, feat3, feat4, feat5, feat6, feat7), dim=1)
|
121 |
-
bottle = self.bottleneck(out)
|
122 |
-
return bottle
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
uvr5_pack/lib_v5/layers_537238KB.py
DELETED
@@ -1,122 +0,0 @@
|
|
1 |
-
import torch
|
2 |
-
from torch import nn
|
3 |
-
import torch.nn.functional as F
|
4 |
-
|
5 |
-
from uvr5_pack.lib_v5 import spec_utils
|
6 |
-
|
7 |
-
|
8 |
-
class Conv2DBNActiv(nn.Module):
|
9 |
-
|
10 |
-
def __init__(self, nin, nout, ksize=3, stride=1, pad=1, dilation=1, activ=nn.ReLU):
|
11 |
-
super(Conv2DBNActiv, self).__init__()
|
12 |
-
self.conv = nn.Sequential(
|
13 |
-
nn.Conv2d(
|
14 |
-
nin, nout,
|
15 |
-
kernel_size=ksize,
|
16 |
-
stride=stride,
|
17 |
-
padding=pad,
|
18 |
-
dilation=dilation,
|
19 |
-
bias=False),
|
20 |
-
nn.BatchNorm2d(nout),
|
21 |
-
activ()
|
22 |
-
)
|
23 |
-
|
24 |
-
def __call__(self, x):
|
25 |
-
return self.conv(x)
|
26 |
-
|
27 |
-
|
28 |
-
class SeperableConv2DBNActiv(nn.Module):
|
29 |
-
|
30 |
-
def __init__(self, nin, nout, ksize=3, stride=1, pad=1, dilation=1, activ=nn.ReLU):
|
31 |
-
super(SeperableConv2DBNActiv, self).__init__()
|
32 |
-
self.conv = nn.Sequential(
|
33 |
-
nn.Conv2d(
|
34 |
-
nin, nin,
|
35 |
-
kernel_size=ksize,
|
36 |
-
stride=stride,
|
37 |
-
padding=pad,
|
38 |
-
dilation=dilation,
|
39 |
-
groups=nin,
|
40 |
-
bias=False),
|
41 |
-
nn.Conv2d(
|
42 |
-
nin, nout,
|
43 |
-
kernel_size=1,
|
44 |
-
bias=False),
|
45 |
-
nn.BatchNorm2d(nout),
|
46 |
-
activ()
|
47 |
-
)
|
48 |
-
|
49 |
-
def __call__(self, x):
|
50 |
-
return self.conv(x)
|
51 |
-
|
52 |
-
|
53 |
-
class Encoder(nn.Module):
|
54 |
-
|
55 |
-
def __init__(self, nin, nout, ksize=3, stride=1, pad=1, activ=nn.LeakyReLU):
|
56 |
-
super(Encoder, self).__init__()
|
57 |
-
self.conv1 = Conv2DBNActiv(nin, nout, ksize, 1, pad, activ=activ)
|
58 |
-
self.conv2 = Conv2DBNActiv(nout, nout, ksize, stride, pad, activ=activ)
|
59 |
-
|
60 |
-
def __call__(self, x):
|
61 |
-
skip = self.conv1(x)
|
62 |
-
h = self.conv2(skip)
|
63 |
-
|
64 |
-
return h, skip
|
65 |
-
|
66 |
-
|
67 |
-
class Decoder(nn.Module):
|
68 |
-
|
69 |
-
def __init__(self, nin, nout, ksize=3, stride=1, pad=1, activ=nn.ReLU, dropout=False):
|
70 |
-
super(Decoder, self).__init__()
|
71 |
-
self.conv = Conv2DBNActiv(nin, nout, ksize, 1, pad, activ=activ)
|
72 |
-
self.dropout = nn.Dropout2d(0.1) if dropout else None
|
73 |
-
|
74 |
-
def __call__(self, x, skip=None):
|
75 |
-
x = F.interpolate(x, scale_factor=2, mode='bilinear', align_corners=True)
|
76 |
-
if skip is not None:
|
77 |
-
skip = spec_utils.crop_center(skip, x)
|
78 |
-
x = torch.cat([x, skip], dim=1)
|
79 |
-
h = self.conv(x)
|
80 |
-
|
81 |
-
if self.dropout is not None:
|
82 |
-
h = self.dropout(h)
|
83 |
-
|
84 |
-
return h
|
85 |
-
|
86 |
-
|
87 |
-
class ASPPModule(nn.Module):
|
88 |
-
|
89 |
-
def __init__(self, nin, nout, dilations=(4, 8, 16, 32, 64), activ=nn.ReLU):
|
90 |
-
super(ASPPModule, self).__init__()
|
91 |
-
self.conv1 = nn.Sequential(
|
92 |
-
nn.AdaptiveAvgPool2d((1, None)),
|
93 |
-
Conv2DBNActiv(nin, nin, 1, 1, 0, activ=activ)
|
94 |
-
)
|
95 |
-
self.conv2 = Conv2DBNActiv(nin, nin, 1, 1, 0, activ=activ)
|
96 |
-
self.conv3 = SeperableConv2DBNActiv(
|
97 |
-
nin, nin, 3, 1, dilations[0], dilations[0], activ=activ)
|
98 |
-
self.conv4 = SeperableConv2DBNActiv(
|
99 |
-
nin, nin, 3, 1, dilations[1], dilations[1], activ=activ)
|
100 |
-
self.conv5 = SeperableConv2DBNActiv(
|
101 |
-
nin, nin, 3, 1, dilations[2], dilations[2], activ=activ)
|
102 |
-
self.conv6 = SeperableConv2DBNActiv(
|
103 |
-
nin, nin, 3, 1, dilations[2], dilations[2], activ=activ)
|
104 |
-
self.conv7 = SeperableConv2DBNActiv(
|
105 |
-
nin, nin, 3, 1, dilations[2], dilations[2], activ=activ)
|
106 |
-
self.bottleneck = nn.Sequential(
|
107 |
-
Conv2DBNActiv(nin * 7, nout, 1, 1, 0, activ=activ),
|
108 |
-
nn.Dropout2d(0.1)
|
109 |
-
)
|
110 |
-
|
111 |
-
def forward(self, x):
|
112 |
-
_, _, h, w = x.size()
|
113 |
-
feat1 = F.interpolate(self.conv1(x), size=(h, w), mode='bilinear', align_corners=True)
|
114 |
-
feat2 = self.conv2(x)
|
115 |
-
feat3 = self.conv3(x)
|
116 |
-
feat4 = self.conv4(x)
|
117 |
-
feat5 = self.conv5(x)
|
118 |
-
feat6 = self.conv6(x)
|
119 |
-
feat7 = self.conv7(x)
|
120 |
-
out = torch.cat((feat1, feat2, feat3, feat4, feat5, feat6, feat7), dim=1)
|
121 |
-
bottle = self.bottleneck(out)
|
122 |
-
return bottle
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
uvr5_pack/lib_v5/model_param_init.py
DELETED
@@ -1,60 +0,0 @@
|
|
1 |
-
import json
|
2 |
-
import os
|
3 |
-
import pathlib
|
4 |
-
|
5 |
-
default_param = {}
|
6 |
-
default_param['bins'] = 768
|
7 |
-
default_param['unstable_bins'] = 9 # training only
|
8 |
-
default_param['reduction_bins'] = 762 # training only
|
9 |
-
default_param['sr'] = 44100
|
10 |
-
default_param['pre_filter_start'] = 757
|
11 |
-
default_param['pre_filter_stop'] = 768
|
12 |
-
default_param['band'] = {}
|
13 |
-
|
14 |
-
|
15 |
-
default_param['band'][1] = {
|
16 |
-
'sr': 11025,
|
17 |
-
'hl': 128,
|
18 |
-
'n_fft': 960,
|
19 |
-
'crop_start': 0,
|
20 |
-
'crop_stop': 245,
|
21 |
-
'lpf_start': 61, # inference only
|
22 |
-
'res_type': 'polyphase'
|
23 |
-
}
|
24 |
-
|
25 |
-
default_param['band'][2] = {
|
26 |
-
'sr': 44100,
|
27 |
-
'hl': 512,
|
28 |
-
'n_fft': 1536,
|
29 |
-
'crop_start': 24,
|
30 |
-
'crop_stop': 547,
|
31 |
-
'hpf_start': 81, # inference only
|
32 |
-
'res_type': 'sinc_best'
|
33 |
-
}
|
34 |
-
|
35 |
-
|
36 |
-
def int_keys(d):
|
37 |
-
r = {}
|
38 |
-
for k, v in d:
|
39 |
-
if k.isdigit():
|
40 |
-
k = int(k)
|
41 |
-
r[k] = v
|
42 |
-
return r
|
43 |
-
|
44 |
-
|
45 |
-
class ModelParameters(object):
|
46 |
-
def __init__(self, config_path=''):
|
47 |
-
if '.pth' == pathlib.Path(config_path).suffix:
|
48 |
-
import zipfile
|
49 |
-
|
50 |
-
with zipfile.ZipFile(config_path, 'r') as zip:
|
51 |
-
self.param = json.loads(zip.read('param.json'), object_pairs_hook=int_keys)
|
52 |
-
elif '.json' == pathlib.Path(config_path).suffix:
|
53 |
-
with open(config_path, 'r') as f:
|
54 |
-
self.param = json.loads(f.read(), object_pairs_hook=int_keys)
|
55 |
-
else:
|
56 |
-
self.param = default_param
|
57 |
-
|
58 |
-
for k in ['mid_side', 'mid_side_b', 'mid_side_b2', 'stereo_w', 'stereo_n', 'reverse']:
|
59 |
-
if not k in self.param:
|
60 |
-
self.param[k] = False
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
uvr5_pack/lib_v5/modelparams/1band_sr16000_hl512.json
DELETED
@@ -1,19 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"bins": 1024,
|
3 |
-
"unstable_bins": 0,
|
4 |
-
"reduction_bins": 0,
|
5 |
-
"band": {
|
6 |
-
"1": {
|
7 |
-
"sr": 16000,
|
8 |
-
"hl": 512,
|
9 |
-
"n_fft": 2048,
|
10 |
-
"crop_start": 0,
|
11 |
-
"crop_stop": 1024,
|
12 |
-
"hpf_start": -1,
|
13 |
-
"res_type": "sinc_best"
|
14 |
-
}
|
15 |
-
},
|
16 |
-
"sr": 16000,
|
17 |
-
"pre_filter_start": 1023,
|
18 |
-
"pre_filter_stop": 1024
|
19 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
uvr5_pack/lib_v5/modelparams/1band_sr32000_hl512.json
DELETED
@@ -1,19 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"bins": 1024,
|
3 |
-
"unstable_bins": 0,
|
4 |
-
"reduction_bins": 0,
|
5 |
-
"band": {
|
6 |
-
"1": {
|
7 |
-
"sr": 32000,
|
8 |
-
"hl": 512,
|
9 |
-
"n_fft": 2048,
|
10 |
-
"crop_start": 0,
|
11 |
-
"crop_stop": 1024,
|
12 |
-
"hpf_start": -1,
|
13 |
-
"res_type": "kaiser_fast"
|
14 |
-
}
|
15 |
-
},
|
16 |
-
"sr": 32000,
|
17 |
-
"pre_filter_start": 1000,
|
18 |
-
"pre_filter_stop": 1021
|
19 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
uvr5_pack/lib_v5/modelparams/1band_sr33075_hl384.json
DELETED
@@ -1,19 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"bins": 1024,
|
3 |
-
"unstable_bins": 0,
|
4 |
-
"reduction_bins": 0,
|
5 |
-
"band": {
|
6 |
-
"1": {
|
7 |
-
"sr": 33075,
|
8 |
-
"hl": 384,
|
9 |
-
"n_fft": 2048,
|
10 |
-
"crop_start": 0,
|
11 |
-
"crop_stop": 1024,
|
12 |
-
"hpf_start": -1,
|
13 |
-
"res_type": "sinc_best"
|
14 |
-
}
|
15 |
-
},
|
16 |
-
"sr": 33075,
|
17 |
-
"pre_filter_start": 1000,
|
18 |
-
"pre_filter_stop": 1021
|
19 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
uvr5_pack/lib_v5/modelparams/1band_sr44100_hl1024.json
DELETED
@@ -1,19 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"bins": 1024,
|
3 |
-
"unstable_bins": 0,
|
4 |
-
"reduction_bins": 0,
|
5 |
-
"band": {
|
6 |
-
"1": {
|
7 |
-
"sr": 44100,
|
8 |
-
"hl": 1024,
|
9 |
-
"n_fft": 2048,
|
10 |
-
"crop_start": 0,
|
11 |
-
"crop_stop": 1024,
|
12 |
-
"hpf_start": -1,
|
13 |
-
"res_type": "sinc_best"
|
14 |
-
}
|
15 |
-
},
|
16 |
-
"sr": 44100,
|
17 |
-
"pre_filter_start": 1023,
|
18 |
-
"pre_filter_stop": 1024
|
19 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
uvr5_pack/lib_v5/modelparams/1band_sr44100_hl256.json
DELETED
@@ -1,19 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"bins": 256,
|
3 |
-
"unstable_bins": 0,
|
4 |
-
"reduction_bins": 0,
|
5 |
-
"band": {
|
6 |
-
"1": {
|
7 |
-
"sr": 44100,
|
8 |
-
"hl": 256,
|
9 |
-
"n_fft": 512,
|
10 |
-
"crop_start": 0,
|
11 |
-
"crop_stop": 256,
|
12 |
-
"hpf_start": -1,
|
13 |
-
"res_type": "sinc_best"
|
14 |
-
}
|
15 |
-
},
|
16 |
-
"sr": 44100,
|
17 |
-
"pre_filter_start": 256,
|
18 |
-
"pre_filter_stop": 256
|
19 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
uvr5_pack/lib_v5/modelparams/1band_sr44100_hl512.json
DELETED
@@ -1,19 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"bins": 1024,
|
3 |
-
"unstable_bins": 0,
|
4 |
-
"reduction_bins": 0,
|
5 |
-
"band": {
|
6 |
-
"1": {
|
7 |
-
"sr": 44100,
|
8 |
-
"hl": 512,
|
9 |
-
"n_fft": 2048,
|
10 |
-
"crop_start": 0,
|
11 |
-
"crop_stop": 1024,
|
12 |
-
"hpf_start": -1,
|
13 |
-
"res_type": "sinc_best"
|
14 |
-
}
|
15 |
-
},
|
16 |
-
"sr": 44100,
|
17 |
-
"pre_filter_start": 1023,
|
18 |
-
"pre_filter_stop": 1024
|
19 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
uvr5_pack/lib_v5/modelparams/1band_sr44100_hl512_cut.json
DELETED
@@ -1,19 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"bins": 1024,
|
3 |
-
"unstable_bins": 0,
|
4 |
-
"reduction_bins": 0,
|
5 |
-
"band": {
|
6 |
-
"1": {
|
7 |
-
"sr": 44100,
|
8 |
-
"hl": 512,
|
9 |
-
"n_fft": 2048,
|
10 |
-
"crop_start": 0,
|
11 |
-
"crop_stop": 700,
|
12 |
-
"hpf_start": -1,
|
13 |
-
"res_type": "sinc_best"
|
14 |
-
}
|
15 |
-
},
|
16 |
-
"sr": 44100,
|
17 |
-
"pre_filter_start": 1023,
|
18 |
-
"pre_filter_stop": 700
|
19 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
uvr5_pack/lib_v5/modelparams/2band_32000.json
DELETED
@@ -1,30 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"bins": 768,
|
3 |
-
"unstable_bins": 7,
|
4 |
-
"reduction_bins": 705,
|
5 |
-
"band": {
|
6 |
-
"1": {
|
7 |
-
"sr": 6000,
|
8 |
-
"hl": 66,
|
9 |
-
"n_fft": 512,
|
10 |
-
"crop_start": 0,
|
11 |
-
"crop_stop": 240,
|
12 |
-
"lpf_start": 60,
|
13 |
-
"lpf_stop": 118,
|
14 |
-
"res_type": "sinc_fastest"
|
15 |
-
},
|
16 |
-
"2": {
|
17 |
-
"sr": 32000,
|
18 |
-
"hl": 352,
|
19 |
-
"n_fft": 1024,
|
20 |
-
"crop_start": 22,
|
21 |
-
"crop_stop": 505,
|
22 |
-
"hpf_start": 44,
|
23 |
-
"hpf_stop": 23,
|
24 |
-
"res_type": "sinc_medium"
|
25 |
-
}
|
26 |
-
},
|
27 |
-
"sr": 32000,
|
28 |
-
"pre_filter_start": 710,
|
29 |
-
"pre_filter_stop": 731
|
30 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
uvr5_pack/lib_v5/modelparams/2band_44100_lofi.json
DELETED
@@ -1,30 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"bins": 512,
|
3 |
-
"unstable_bins": 7,
|
4 |
-
"reduction_bins": 510,
|
5 |
-
"band": {
|
6 |
-
"1": {
|
7 |
-
"sr": 11025,
|
8 |
-
"hl": 160,
|
9 |
-
"n_fft": 768,
|
10 |
-
"crop_start": 0,
|
11 |
-
"crop_stop": 192,
|
12 |
-
"lpf_start": 41,
|
13 |
-
"lpf_stop": 139,
|
14 |
-
"res_type": "sinc_fastest"
|
15 |
-
},
|
16 |
-
"2": {
|
17 |
-
"sr": 44100,
|
18 |
-
"hl": 640,
|
19 |
-
"n_fft": 1024,
|
20 |
-
"crop_start": 10,
|
21 |
-
"crop_stop": 320,
|
22 |
-
"hpf_start": 47,
|
23 |
-
"hpf_stop": 15,
|
24 |
-
"res_type": "sinc_medium"
|
25 |
-
}
|
26 |
-
},
|
27 |
-
"sr": 44100,
|
28 |
-
"pre_filter_start": 510,
|
29 |
-
"pre_filter_stop": 512
|
30 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
uvr5_pack/lib_v5/modelparams/2band_48000.json
DELETED
@@ -1,30 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"bins": 768,
|
3 |
-
"unstable_bins": 7,
|
4 |
-
"reduction_bins": 705,
|
5 |
-
"band": {
|
6 |
-
"1": {
|
7 |
-
"sr": 6000,
|
8 |
-
"hl": 66,
|
9 |
-
"n_fft": 512,
|
10 |
-
"crop_start": 0,
|
11 |
-
"crop_stop": 240,
|
12 |
-
"lpf_start": 60,
|
13 |
-
"lpf_stop": 240,
|
14 |
-
"res_type": "sinc_fastest"
|
15 |
-
},
|
16 |
-
"2": {
|
17 |
-
"sr": 48000,
|
18 |
-
"hl": 528,
|
19 |
-
"n_fft": 1536,
|
20 |
-
"crop_start": 22,
|
21 |
-
"crop_stop": 505,
|
22 |
-
"hpf_start": 82,
|
23 |
-
"hpf_stop": 22,
|
24 |
-
"res_type": "sinc_medium"
|
25 |
-
}
|
26 |
-
},
|
27 |
-
"sr": 48000,
|
28 |
-
"pre_filter_start": 710,
|
29 |
-
"pre_filter_stop": 731
|
30 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
uvr5_pack/lib_v5/modelparams/3band_44100.json
DELETED
@@ -1,42 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"bins": 768,
|
3 |
-
"unstable_bins": 5,
|
4 |
-
"reduction_bins": 733,
|
5 |
-
"band": {
|
6 |
-
"1": {
|
7 |
-
"sr": 11025,
|
8 |
-
"hl": 128,
|
9 |
-
"n_fft": 768,
|
10 |
-
"crop_start": 0,
|
11 |
-
"crop_stop": 278,
|
12 |
-
"lpf_start": 28,
|
13 |
-
"lpf_stop": 140,
|
14 |
-
"res_type": "polyphase"
|
15 |
-
},
|
16 |
-
"2": {
|
17 |
-
"sr": 22050,
|
18 |
-
"hl": 256,
|
19 |
-
"n_fft": 768,
|
20 |
-
"crop_start": 14,
|
21 |
-
"crop_stop": 322,
|
22 |
-
"hpf_start": 70,
|
23 |
-
"hpf_stop": 14,
|
24 |
-
"lpf_start": 283,
|
25 |
-
"lpf_stop": 314,
|
26 |
-
"res_type": "polyphase"
|
27 |
-
},
|
28 |
-
"3": {
|
29 |
-
"sr": 44100,
|
30 |
-
"hl": 512,
|
31 |
-
"n_fft": 768,
|
32 |
-
"crop_start": 131,
|
33 |
-
"crop_stop": 313,
|
34 |
-
"hpf_start": 154,
|
35 |
-
"hpf_stop": 141,
|
36 |
-
"res_type": "sinc_medium"
|
37 |
-
}
|
38 |
-
},
|
39 |
-
"sr": 44100,
|
40 |
-
"pre_filter_start": 757,
|
41 |
-
"pre_filter_stop": 768
|
42 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
uvr5_pack/lib_v5/modelparams/3band_44100_mid.json
DELETED
@@ -1,43 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"mid_side": true,
|
3 |
-
"bins": 768,
|
4 |
-
"unstable_bins": 5,
|
5 |
-
"reduction_bins": 733,
|
6 |
-
"band": {
|
7 |
-
"1": {
|
8 |
-
"sr": 11025,
|
9 |
-
"hl": 128,
|
10 |
-
"n_fft": 768,
|
11 |
-
"crop_start": 0,
|
12 |
-
"crop_stop": 278,
|
13 |
-
"lpf_start": 28,
|
14 |
-
"lpf_stop": 140,
|
15 |
-
"res_type": "polyphase"
|
16 |
-
},
|
17 |
-
"2": {
|
18 |
-
"sr": 22050,
|
19 |
-
"hl": 256,
|
20 |
-
"n_fft": 768,
|
21 |
-
"crop_start": 14,
|
22 |
-
"crop_stop": 322,
|
23 |
-
"hpf_start": 70,
|
24 |
-
"hpf_stop": 14,
|
25 |
-
"lpf_start": 283,
|
26 |
-
"lpf_stop": 314,
|
27 |
-
"res_type": "polyphase"
|
28 |
-
},
|
29 |
-
"3": {
|
30 |
-
"sr": 44100,
|
31 |
-
"hl": 512,
|
32 |
-
"n_fft": 768,
|
33 |
-
"crop_start": 131,
|
34 |
-
"crop_stop": 313,
|
35 |
-
"hpf_start": 154,
|
36 |
-
"hpf_stop": 141,
|
37 |
-
"res_type": "sinc_medium"
|
38 |
-
}
|
39 |
-
},
|
40 |
-
"sr": 44100,
|
41 |
-
"pre_filter_start": 757,
|
42 |
-
"pre_filter_stop": 768
|
43 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
uvr5_pack/lib_v5/modelparams/3band_44100_msb2.json
DELETED
@@ -1,43 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"mid_side_b2": true,
|
3 |
-
"bins": 640,
|
4 |
-
"unstable_bins": 7,
|
5 |
-
"reduction_bins": 565,
|
6 |
-
"band": {
|
7 |
-
"1": {
|
8 |
-
"sr": 11025,
|
9 |
-
"hl": 108,
|
10 |
-
"n_fft": 1024,
|
11 |
-
"crop_start": 0,
|
12 |
-
"crop_stop": 187,
|
13 |
-
"lpf_start": 92,
|
14 |
-
"lpf_stop": 186,
|
15 |
-
"res_type": "polyphase"
|
16 |
-
},
|
17 |
-
"2": {
|
18 |
-
"sr": 22050,
|
19 |
-
"hl": 216,
|
20 |
-
"n_fft": 768,
|
21 |
-
"crop_start": 0,
|
22 |
-
"crop_stop": 212,
|
23 |
-
"hpf_start": 68,
|
24 |
-
"hpf_stop": 34,
|
25 |
-
"lpf_start": 174,
|
26 |
-
"lpf_stop": 209,
|
27 |
-
"res_type": "polyphase"
|
28 |
-
},
|
29 |
-
"3": {
|
30 |
-
"sr": 44100,
|
31 |
-
"hl": 432,
|
32 |
-
"n_fft": 640,
|
33 |
-
"crop_start": 66,
|
34 |
-
"crop_stop": 307,
|
35 |
-
"hpf_start": 86,
|
36 |
-
"hpf_stop": 72,
|
37 |
-
"res_type": "kaiser_fast"
|
38 |
-
}
|
39 |
-
},
|
40 |
-
"sr": 44100,
|
41 |
-
"pre_filter_start": 639,
|
42 |
-
"pre_filter_stop": 640
|
43 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
uvr5_pack/lib_v5/modelparams/4band_44100.json
DELETED
@@ -1,54 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"bins": 768,
|
3 |
-
"unstable_bins": 7,
|
4 |
-
"reduction_bins": 668,
|
5 |
-
"band": {
|
6 |
-
"1": {
|
7 |
-
"sr": 11025,
|
8 |
-
"hl": 128,
|
9 |
-
"n_fft": 1024,
|
10 |
-
"crop_start": 0,
|
11 |
-
"crop_stop": 186,
|
12 |
-
"lpf_start": 37,
|
13 |
-
"lpf_stop": 73,
|
14 |
-
"res_type": "polyphase"
|
15 |
-
},
|
16 |
-
"2": {
|
17 |
-
"sr": 11025,
|
18 |
-
"hl": 128,
|
19 |
-
"n_fft": 512,
|
20 |
-
"crop_start": 4,
|
21 |
-
"crop_stop": 185,
|
22 |
-
"hpf_start": 36,
|
23 |
-
"hpf_stop": 18,
|
24 |
-
"lpf_start": 93,
|
25 |
-
"lpf_stop": 185,
|
26 |
-
"res_type": "polyphase"
|
27 |
-
},
|
28 |
-
"3": {
|
29 |
-
"sr": 22050,
|
30 |
-
"hl": 256,
|
31 |
-
"n_fft": 512,
|
32 |
-
"crop_start": 46,
|
33 |
-
"crop_stop": 186,
|
34 |
-
"hpf_start": 93,
|
35 |
-
"hpf_stop": 46,
|
36 |
-
"lpf_start": 164,
|
37 |
-
"lpf_stop": 186,
|
38 |
-
"res_type": "polyphase"
|
39 |
-
},
|
40 |
-
"4": {
|
41 |
-
"sr": 44100,
|
42 |
-
"hl": 512,
|
43 |
-
"n_fft": 768,
|
44 |
-
"crop_start": 121,
|
45 |
-
"crop_stop": 382,
|
46 |
-
"hpf_start": 138,
|
47 |
-
"hpf_stop": 123,
|
48 |
-
"res_type": "sinc_medium"
|
49 |
-
}
|
50 |
-
},
|
51 |
-
"sr": 44100,
|
52 |
-
"pre_filter_start": 740,
|
53 |
-
"pre_filter_stop": 768
|
54 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
uvr5_pack/lib_v5/modelparams/4band_44100_mid.json
DELETED
@@ -1,55 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"bins": 768,
|
3 |
-
"unstable_bins": 7,
|
4 |
-
"mid_side": true,
|
5 |
-
"reduction_bins": 668,
|
6 |
-
"band": {
|
7 |
-
"1": {
|
8 |
-
"sr": 11025,
|
9 |
-
"hl": 128,
|
10 |
-
"n_fft": 1024,
|
11 |
-
"crop_start": 0,
|
12 |
-
"crop_stop": 186,
|
13 |
-
"lpf_start": 37,
|
14 |
-
"lpf_stop": 73,
|
15 |
-
"res_type": "polyphase"
|
16 |
-
},
|
17 |
-
"2": {
|
18 |
-
"sr": 11025,
|
19 |
-
"hl": 128,
|
20 |
-
"n_fft": 512,
|
21 |
-
"crop_start": 4,
|
22 |
-
"crop_stop": 185,
|
23 |
-
"hpf_start": 36,
|
24 |
-
"hpf_stop": 18,
|
25 |
-
"lpf_start": 93,
|
26 |
-
"lpf_stop": 185,
|
27 |
-
"res_type": "polyphase"
|
28 |
-
},
|
29 |
-
"3": {
|
30 |
-
"sr": 22050,
|
31 |
-
"hl": 256,
|
32 |
-
"n_fft": 512,
|
33 |
-
"crop_start": 46,
|
34 |
-
"crop_stop": 186,
|
35 |
-
"hpf_start": 93,
|
36 |
-
"hpf_stop": 46,
|
37 |
-
"lpf_start": 164,
|
38 |
-
"lpf_stop": 186,
|
39 |
-
"res_type": "polyphase"
|
40 |
-
},
|
41 |
-
"4": {
|
42 |
-
"sr": 44100,
|
43 |
-
"hl": 512,
|
44 |
-
"n_fft": 768,
|
45 |
-
"crop_start": 121,
|
46 |
-
"crop_stop": 382,
|
47 |
-
"hpf_start": 138,
|
48 |
-
"hpf_stop": 123,
|
49 |
-
"res_type": "sinc_medium"
|
50 |
-
}
|
51 |
-
},
|
52 |
-
"sr": 44100,
|
53 |
-
"pre_filter_start": 740,
|
54 |
-
"pre_filter_stop": 768
|
55 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
uvr5_pack/lib_v5/modelparams/4band_44100_msb.json
DELETED
@@ -1,55 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"mid_side_b": true,
|
3 |
-
"bins": 768,
|
4 |
-
"unstable_bins": 7,
|
5 |
-
"reduction_bins": 668,
|
6 |
-
"band": {
|
7 |
-
"1": {
|
8 |
-
"sr": 11025,
|
9 |
-
"hl": 128,
|
10 |
-
"n_fft": 1024,
|
11 |
-
"crop_start": 0,
|
12 |
-
"crop_stop": 186,
|
13 |
-
"lpf_start": 37,
|
14 |
-
"lpf_stop": 73,
|
15 |
-
"res_type": "polyphase"
|
16 |
-
},
|
17 |
-
"2": {
|
18 |
-
"sr": 11025,
|
19 |
-
"hl": 128,
|
20 |
-
"n_fft": 512,
|
21 |
-
"crop_start": 4,
|
22 |
-
"crop_stop": 185,
|
23 |
-
"hpf_start": 36,
|
24 |
-
"hpf_stop": 18,
|
25 |
-
"lpf_start": 93,
|
26 |
-
"lpf_stop": 185,
|
27 |
-
"res_type": "polyphase"
|
28 |
-
},
|
29 |
-
"3": {
|
30 |
-
"sr": 22050,
|
31 |
-
"hl": 256,
|
32 |
-
"n_fft": 512,
|
33 |
-
"crop_start": 46,
|
34 |
-
"crop_stop": 186,
|
35 |
-
"hpf_start": 93,
|
36 |
-
"hpf_stop": 46,
|
37 |
-
"lpf_start": 164,
|
38 |
-
"lpf_stop": 186,
|
39 |
-
"res_type": "polyphase"
|
40 |
-
},
|
41 |
-
"4": {
|
42 |
-
"sr": 44100,
|
43 |
-
"hl": 512,
|
44 |
-
"n_fft": 768,
|
45 |
-
"crop_start": 121,
|
46 |
-
"crop_stop": 382,
|
47 |
-
"hpf_start": 138,
|
48 |
-
"hpf_stop": 123,
|
49 |
-
"res_type": "sinc_medium"
|
50 |
-
}
|
51 |
-
},
|
52 |
-
"sr": 44100,
|
53 |
-
"pre_filter_start": 740,
|
54 |
-
"pre_filter_stop": 768
|
55 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
uvr5_pack/lib_v5/modelparams/4band_44100_msb2.json
DELETED
@@ -1,55 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"mid_side_b": true,
|
3 |
-
"bins": 768,
|
4 |
-
"unstable_bins": 7,
|
5 |
-
"reduction_bins": 668,
|
6 |
-
"band": {
|
7 |
-
"1": {
|
8 |
-
"sr": 11025,
|
9 |
-
"hl": 128,
|
10 |
-
"n_fft": 1024,
|
11 |
-
"crop_start": 0,
|
12 |
-
"crop_stop": 186,
|
13 |
-
"lpf_start": 37,
|
14 |
-
"lpf_stop": 73,
|
15 |
-
"res_type": "polyphase"
|
16 |
-
},
|
17 |
-
"2": {
|
18 |
-
"sr": 11025,
|
19 |
-
"hl": 128,
|
20 |
-
"n_fft": 512,
|
21 |
-
"crop_start": 4,
|
22 |
-
"crop_stop": 185,
|
23 |
-
"hpf_start": 36,
|
24 |
-
"hpf_stop": 18,
|
25 |
-
"lpf_start": 93,
|
26 |
-
"lpf_stop": 185,
|
27 |
-
"res_type": "polyphase"
|
28 |
-
},
|
29 |
-
"3": {
|
30 |
-
"sr": 22050,
|
31 |
-
"hl": 256,
|
32 |
-
"n_fft": 512,
|
33 |
-
"crop_start": 46,
|
34 |
-
"crop_stop": 186,
|
35 |
-
"hpf_start": 93,
|
36 |
-
"hpf_stop": 46,
|
37 |
-
"lpf_start": 164,
|
38 |
-
"lpf_stop": 186,
|
39 |
-
"res_type": "polyphase"
|
40 |
-
},
|
41 |
-
"4": {
|
42 |
-
"sr": 44100,
|
43 |
-
"hl": 512,
|
44 |
-
"n_fft": 768,
|
45 |
-
"crop_start": 121,
|
46 |
-
"crop_stop": 382,
|
47 |
-
"hpf_start": 138,
|
48 |
-
"hpf_stop": 123,
|
49 |
-
"res_type": "sinc_medium"
|
50 |
-
}
|
51 |
-
},
|
52 |
-
"sr": 44100,
|
53 |
-
"pre_filter_start": 740,
|
54 |
-
"pre_filter_stop": 768
|
55 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
uvr5_pack/lib_v5/modelparams/4band_44100_reverse.json
DELETED
@@ -1,55 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"reverse": true,
|
3 |
-
"bins": 768,
|
4 |
-
"unstable_bins": 7,
|
5 |
-
"reduction_bins": 668,
|
6 |
-
"band": {
|
7 |
-
"1": {
|
8 |
-
"sr": 11025,
|
9 |
-
"hl": 128,
|
10 |
-
"n_fft": 1024,
|
11 |
-
"crop_start": 0,
|
12 |
-
"crop_stop": 186,
|
13 |
-
"lpf_start": 37,
|
14 |
-
"lpf_stop": 73,
|
15 |
-
"res_type": "polyphase"
|
16 |
-
},
|
17 |
-
"2": {
|
18 |
-
"sr": 11025,
|
19 |
-
"hl": 128,
|
20 |
-
"n_fft": 512,
|
21 |
-
"crop_start": 4,
|
22 |
-
"crop_stop": 185,
|
23 |
-
"hpf_start": 36,
|
24 |
-
"hpf_stop": 18,
|
25 |
-
"lpf_start": 93,
|
26 |
-
"lpf_stop": 185,
|
27 |
-
"res_type": "polyphase"
|
28 |
-
},
|
29 |
-
"3": {
|
30 |
-
"sr": 22050,
|
31 |
-
"hl": 256,
|
32 |
-
"n_fft": 512,
|
33 |
-
"crop_start": 46,
|
34 |
-
"crop_stop": 186,
|
35 |
-
"hpf_start": 93,
|
36 |
-
"hpf_stop": 46,
|
37 |
-
"lpf_start": 164,
|
38 |
-
"lpf_stop": 186,
|
39 |
-
"res_type": "polyphase"
|
40 |
-
},
|
41 |
-
"4": {
|
42 |
-
"sr": 44100,
|
43 |
-
"hl": 512,
|
44 |
-
"n_fft": 768,
|
45 |
-
"crop_start": 121,
|
46 |
-
"crop_stop": 382,
|
47 |
-
"hpf_start": 138,
|
48 |
-
"hpf_stop": 123,
|
49 |
-
"res_type": "sinc_medium"
|
50 |
-
}
|
51 |
-
},
|
52 |
-
"sr": 44100,
|
53 |
-
"pre_filter_start": 740,
|
54 |
-
"pre_filter_stop": 768
|
55 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
uvr5_pack/lib_v5/modelparams/4band_44100_sw.json
DELETED
@@ -1,55 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"stereo_w": true,
|
3 |
-
"bins": 768,
|
4 |
-
"unstable_bins": 7,
|
5 |
-
"reduction_bins": 668,
|
6 |
-
"band": {
|
7 |
-
"1": {
|
8 |
-
"sr": 11025,
|
9 |
-
"hl": 128,
|
10 |
-
"n_fft": 1024,
|
11 |
-
"crop_start": 0,
|
12 |
-
"crop_stop": 186,
|
13 |
-
"lpf_start": 37,
|
14 |
-
"lpf_stop": 73,
|
15 |
-
"res_type": "polyphase"
|
16 |
-
},
|
17 |
-
"2": {
|
18 |
-
"sr": 11025,
|
19 |
-
"hl": 128,
|
20 |
-
"n_fft": 512,
|
21 |
-
"crop_start": 4,
|
22 |
-
"crop_stop": 185,
|
23 |
-
"hpf_start": 36,
|
24 |
-
"hpf_stop": 18,
|
25 |
-
"lpf_start": 93,
|
26 |
-
"lpf_stop": 185,
|
27 |
-
"res_type": "polyphase"
|
28 |
-
},
|
29 |
-
"3": {
|
30 |
-
"sr": 22050,
|
31 |
-
"hl": 256,
|
32 |
-
"n_fft": 512,
|
33 |
-
"crop_start": 46,
|
34 |
-
"crop_stop": 186,
|
35 |
-
"hpf_start": 93,
|
36 |
-
"hpf_stop": 46,
|
37 |
-
"lpf_start": 164,
|
38 |
-
"lpf_stop": 186,
|
39 |
-
"res_type": "polyphase"
|
40 |
-
},
|
41 |
-
"4": {
|
42 |
-
"sr": 44100,
|
43 |
-
"hl": 512,
|
44 |
-
"n_fft": 768,
|
45 |
-
"crop_start": 121,
|
46 |
-
"crop_stop": 382,
|
47 |
-
"hpf_start": 138,
|
48 |
-
"hpf_stop": 123,
|
49 |
-
"res_type": "sinc_medium"
|
50 |
-
}
|
51 |
-
},
|
52 |
-
"sr": 44100,
|
53 |
-
"pre_filter_start": 740,
|
54 |
-
"pre_filter_stop": 768
|
55 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
uvr5_pack/lib_v5/modelparams/4band_v2.json
DELETED
@@ -1,54 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"bins": 672,
|
3 |
-
"unstable_bins": 8,
|
4 |
-
"reduction_bins": 637,
|
5 |
-
"band": {
|
6 |
-
"1": {
|
7 |
-
"sr": 7350,
|
8 |
-
"hl": 80,
|
9 |
-
"n_fft": 640,
|
10 |
-
"crop_start": 0,
|
11 |
-
"crop_stop": 85,
|
12 |
-
"lpf_start": 25,
|
13 |
-
"lpf_stop": 53,
|
14 |
-
"res_type": "polyphase"
|
15 |
-
},
|
16 |
-
"2": {
|
17 |
-
"sr": 7350,
|
18 |
-
"hl": 80,
|
19 |
-
"n_fft": 320,
|
20 |
-
"crop_start": 4,
|
21 |
-
"crop_stop": 87,
|
22 |
-
"hpf_start": 25,
|
23 |
-
"hpf_stop": 12,
|
24 |
-
"lpf_start": 31,
|
25 |
-
"lpf_stop": 62,
|
26 |
-
"res_type": "polyphase"
|
27 |
-
},
|
28 |
-
"3": {
|
29 |
-
"sr": 14700,
|
30 |
-
"hl": 160,
|
31 |
-
"n_fft": 512,
|
32 |
-
"crop_start": 17,
|
33 |
-
"crop_stop": 216,
|
34 |
-
"hpf_start": 48,
|
35 |
-
"hpf_stop": 24,
|
36 |
-
"lpf_start": 139,
|
37 |
-
"lpf_stop": 210,
|
38 |
-
"res_type": "polyphase"
|
39 |
-
},
|
40 |
-
"4": {
|
41 |
-
"sr": 44100,
|
42 |
-
"hl": 480,
|
43 |
-
"n_fft": 960,
|
44 |
-
"crop_start": 78,
|
45 |
-
"crop_stop": 383,
|
46 |
-
"hpf_start": 130,
|
47 |
-
"hpf_stop": 86,
|
48 |
-
"res_type": "kaiser_fast"
|
49 |
-
}
|
50 |
-
},
|
51 |
-
"sr": 44100,
|
52 |
-
"pre_filter_start": 668,
|
53 |
-
"pre_filter_stop": 672
|
54 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
uvr5_pack/lib_v5/modelparams/4band_v2_sn.json
DELETED
@@ -1,55 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"bins": 672,
|
3 |
-
"unstable_bins": 8,
|
4 |
-
"reduction_bins": 637,
|
5 |
-
"band": {
|
6 |
-
"1": {
|
7 |
-
"sr": 7350,
|
8 |
-
"hl": 80,
|
9 |
-
"n_fft": 640,
|
10 |
-
"crop_start": 0,
|
11 |
-
"crop_stop": 85,
|
12 |
-
"lpf_start": 25,
|
13 |
-
"lpf_stop": 53,
|
14 |
-
"res_type": "polyphase"
|
15 |
-
},
|
16 |
-
"2": {
|
17 |
-
"sr": 7350,
|
18 |
-
"hl": 80,
|
19 |
-
"n_fft": 320,
|
20 |
-
"crop_start": 4,
|
21 |
-
"crop_stop": 87,
|
22 |
-
"hpf_start": 25,
|
23 |
-
"hpf_stop": 12,
|
24 |
-
"lpf_start": 31,
|
25 |
-
"lpf_stop": 62,
|
26 |
-
"res_type": "polyphase"
|
27 |
-
},
|
28 |
-
"3": {
|
29 |
-
"sr": 14700,
|
30 |
-
"hl": 160,
|
31 |
-
"n_fft": 512,
|
32 |
-
"crop_start": 17,
|
33 |
-
"crop_stop": 216,
|
34 |
-
"hpf_start": 48,
|
35 |
-
"hpf_stop": 24,
|
36 |
-
"lpf_start": 139,
|
37 |
-
"lpf_stop": 210,
|
38 |
-
"res_type": "polyphase"
|
39 |
-
},
|
40 |
-
"4": {
|
41 |
-
"sr": 44100,
|
42 |
-
"hl": 480,
|
43 |
-
"n_fft": 960,
|
44 |
-
"crop_start": 78,
|
45 |
-
"crop_stop": 383,
|
46 |
-
"hpf_start": 130,
|
47 |
-
"hpf_stop": 86,
|
48 |
-
"convert_channels": "stereo_n",
|
49 |
-
"res_type": "kaiser_fast"
|
50 |
-
}
|
51 |
-
},
|
52 |
-
"sr": 44100,
|
53 |
-
"pre_filter_start": 668,
|
54 |
-
"pre_filter_stop": 672
|
55 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
uvr5_pack/lib_v5/modelparams/ensemble.json
DELETED
@@ -1,43 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"mid_side_b2": true,
|
3 |
-
"bins": 1280,
|
4 |
-
"unstable_bins": 7,
|
5 |
-
"reduction_bins": 565,
|
6 |
-
"band": {
|
7 |
-
"1": {
|
8 |
-
"sr": 11025,
|
9 |
-
"hl": 108,
|
10 |
-
"n_fft": 2048,
|
11 |
-
"crop_start": 0,
|
12 |
-
"crop_stop": 374,
|
13 |
-
"lpf_start": 92,
|
14 |
-
"lpf_stop": 186,
|
15 |
-
"res_type": "polyphase"
|
16 |
-
},
|
17 |
-
"2": {
|
18 |
-
"sr": 22050,
|
19 |
-
"hl": 216,
|
20 |
-
"n_fft": 1536,
|
21 |
-
"crop_start": 0,
|
22 |
-
"crop_stop": 424,
|
23 |
-
"hpf_start": 68,
|
24 |
-
"hpf_stop": 34,
|
25 |
-
"lpf_start": 348,
|
26 |
-
"lpf_stop": 418,
|
27 |
-
"res_type": "polyphase"
|
28 |
-
},
|
29 |
-
"3": {
|
30 |
-
"sr": 44100,
|
31 |
-
"hl": 432,
|
32 |
-
"n_fft": 1280,
|
33 |
-
"crop_start": 132,
|
34 |
-
"crop_stop": 614,
|
35 |
-
"hpf_start": 172,
|
36 |
-
"hpf_stop": 144,
|
37 |
-
"res_type": "polyphase"
|
38 |
-
}
|
39 |
-
},
|
40 |
-
"sr": 44100,
|
41 |
-
"pre_filter_start": 1280,
|
42 |
-
"pre_filter_stop": 1280
|
43 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
uvr5_pack/lib_v5/nets.py
DELETED
@@ -1,113 +0,0 @@
|
|
1 |
-
import torch
|
2 |
-
from torch import nn
|
3 |
-
import torch.nn.functional as F
|
4 |
-
|
5 |
-
from uvr5_pack.lib_v5 import layers
|
6 |
-
from uvr5_pack.lib_v5 import spec_utils
|
7 |
-
|
8 |
-
|
9 |
-
class BaseASPPNet(nn.Module):
|
10 |
-
|
11 |
-
def __init__(self, nin, ch, dilations=(4, 8, 16)):
|
12 |
-
super(BaseASPPNet, self).__init__()
|
13 |
-
self.enc1 = layers.Encoder(nin, ch, 3, 2, 1)
|
14 |
-
self.enc2 = layers.Encoder(ch, ch * 2, 3, 2, 1)
|
15 |
-
self.enc3 = layers.Encoder(ch * 2, ch * 4, 3, 2, 1)
|
16 |
-
self.enc4 = layers.Encoder(ch * 4, ch * 8, 3, 2, 1)
|
17 |
-
|
18 |
-
self.aspp = layers.ASPPModule(ch * 8, ch * 16, dilations)
|
19 |
-
|
20 |
-
self.dec4 = layers.Decoder(ch * (8 + 16), ch * 8, 3, 1, 1)
|
21 |
-
self.dec3 = layers.Decoder(ch * (4 + 8), ch * 4, 3, 1, 1)
|
22 |
-
self.dec2 = layers.Decoder(ch * (2 + 4), ch * 2, 3, 1, 1)
|
23 |
-
self.dec1 = layers.Decoder(ch * (1 + 2), ch, 3, 1, 1)
|
24 |
-
|
25 |
-
def __call__(self, x):
|
26 |
-
h, e1 = self.enc1(x)
|
27 |
-
h, e2 = self.enc2(h)
|
28 |
-
h, e3 = self.enc3(h)
|
29 |
-
h, e4 = self.enc4(h)
|
30 |
-
|
31 |
-
h = self.aspp(h)
|
32 |
-
|
33 |
-
h = self.dec4(h, e4)
|
34 |
-
h = self.dec3(h, e3)
|
35 |
-
h = self.dec2(h, e2)
|
36 |
-
h = self.dec1(h, e1)
|
37 |
-
|
38 |
-
return h
|
39 |
-
|
40 |
-
|
41 |
-
class CascadedASPPNet(nn.Module):
|
42 |
-
|
43 |
-
def __init__(self, n_fft):
|
44 |
-
super(CascadedASPPNet, self).__init__()
|
45 |
-
self.stg1_low_band_net = BaseASPPNet(2, 16)
|
46 |
-
self.stg1_high_band_net = BaseASPPNet(2, 16)
|
47 |
-
|
48 |
-
self.stg2_bridge = layers.Conv2DBNActiv(18, 8, 1, 1, 0)
|
49 |
-
self.stg2_full_band_net = BaseASPPNet(8, 16)
|
50 |
-
|
51 |
-
self.stg3_bridge = layers.Conv2DBNActiv(34, 16, 1, 1, 0)
|
52 |
-
self.stg3_full_band_net = BaseASPPNet(16, 32)
|
53 |
-
|
54 |
-
self.out = nn.Conv2d(32, 2, 1, bias=False)
|
55 |
-
self.aux1_out = nn.Conv2d(16, 2, 1, bias=False)
|
56 |
-
self.aux2_out = nn.Conv2d(16, 2, 1, bias=False)
|
57 |
-
|
58 |
-
self.max_bin = n_fft // 2
|
59 |
-
self.output_bin = n_fft // 2 + 1
|
60 |
-
|
61 |
-
self.offset = 128
|
62 |
-
|
63 |
-
def forward(self, x, aggressiveness=None):
|
64 |
-
mix = x.detach()
|
65 |
-
x = x.clone()
|
66 |
-
|
67 |
-
x = x[:, :, :self.max_bin]
|
68 |
-
|
69 |
-
bandw = x.size()[2] // 2
|
70 |
-
aux1 = torch.cat([
|
71 |
-
self.stg1_low_band_net(x[:, :, :bandw]),
|
72 |
-
self.stg1_high_band_net(x[:, :, bandw:])
|
73 |
-
], dim=2)
|
74 |
-
|
75 |
-
h = torch.cat([x, aux1], dim=1)
|
76 |
-
aux2 = self.stg2_full_band_net(self.stg2_bridge(h))
|
77 |
-
|
78 |
-
h = torch.cat([x, aux1, aux2], dim=1)
|
79 |
-
h = self.stg3_full_band_net(self.stg3_bridge(h))
|
80 |
-
|
81 |
-
mask = torch.sigmoid(self.out(h))
|
82 |
-
mask = F.pad(
|
83 |
-
input=mask,
|
84 |
-
pad=(0, 0, 0, self.output_bin - mask.size()[2]),
|
85 |
-
mode='replicate')
|
86 |
-
|
87 |
-
if self.training:
|
88 |
-
aux1 = torch.sigmoid(self.aux1_out(aux1))
|
89 |
-
aux1 = F.pad(
|
90 |
-
input=aux1,
|
91 |
-
pad=(0, 0, 0, self.output_bin - aux1.size()[2]),
|
92 |
-
mode='replicate')
|
93 |
-
aux2 = torch.sigmoid(self.aux2_out(aux2))
|
94 |
-
aux2 = F.pad(
|
95 |
-
input=aux2,
|
96 |
-
pad=(0, 0, 0, self.output_bin - aux2.size()[2]),
|
97 |
-
mode='replicate')
|
98 |
-
return mask * mix, aux1 * mix, aux2 * mix
|
99 |
-
else:
|
100 |
-
if aggressiveness:
|
101 |
-
mask[:, :, :aggressiveness['split_bin']] = torch.pow(mask[:, :, :aggressiveness['split_bin']], 1 + aggressiveness['value'] / 3)
|
102 |
-
mask[:, :, aggressiveness['split_bin']:] = torch.pow(mask[:, :, aggressiveness['split_bin']:], 1 + aggressiveness['value'])
|
103 |
-
|
104 |
-
return mask * mix
|
105 |
-
|
106 |
-
def predict(self, x_mag, aggressiveness=None):
|
107 |
-
h = self.forward(x_mag, aggressiveness)
|
108 |
-
|
109 |
-
if self.offset > 0:
|
110 |
-
h = h[:, :, :, self.offset:-self.offset]
|
111 |
-
assert h.size()[3] > 0
|
112 |
-
|
113 |
-
return h
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
uvr5_pack/lib_v5/nets_123812KB.py
DELETED
@@ -1,112 +0,0 @@
|
|
1 |
-
import torch
|
2 |
-
from torch import nn
|
3 |
-
import torch.nn.functional as F
|
4 |
-
|
5 |
-
from uvr5_pack.lib_v5 import layers_123821KB as layers
|
6 |
-
|
7 |
-
|
8 |
-
class BaseASPPNet(nn.Module):
|
9 |
-
|
10 |
-
def __init__(self, nin, ch, dilations=(4, 8, 16)):
|
11 |
-
super(BaseASPPNet, self).__init__()
|
12 |
-
self.enc1 = layers.Encoder(nin, ch, 3, 2, 1)
|
13 |
-
self.enc2 = layers.Encoder(ch, ch * 2, 3, 2, 1)
|
14 |
-
self.enc3 = layers.Encoder(ch * 2, ch * 4, 3, 2, 1)
|
15 |
-
self.enc4 = layers.Encoder(ch * 4, ch * 8, 3, 2, 1)
|
16 |
-
|
17 |
-
self.aspp = layers.ASPPModule(ch * 8, ch * 16, dilations)
|
18 |
-
|
19 |
-
self.dec4 = layers.Decoder(ch * (8 + 16), ch * 8, 3, 1, 1)
|
20 |
-
self.dec3 = layers.Decoder(ch * (4 + 8), ch * 4, 3, 1, 1)
|
21 |
-
self.dec2 = layers.Decoder(ch * (2 + 4), ch * 2, 3, 1, 1)
|
22 |
-
self.dec1 = layers.Decoder(ch * (1 + 2), ch, 3, 1, 1)
|
23 |
-
|
24 |
-
def __call__(self, x):
|
25 |
-
h, e1 = self.enc1(x)
|
26 |
-
h, e2 = self.enc2(h)
|
27 |
-
h, e3 = self.enc3(h)
|
28 |
-
h, e4 = self.enc4(h)
|
29 |
-
|
30 |
-
h = self.aspp(h)
|
31 |
-
|
32 |
-
h = self.dec4(h, e4)
|
33 |
-
h = self.dec3(h, e3)
|
34 |
-
h = self.dec2(h, e2)
|
35 |
-
h = self.dec1(h, e1)
|
36 |
-
|
37 |
-
return h
|
38 |
-
|
39 |
-
|
40 |
-
class CascadedASPPNet(nn.Module):
|
41 |
-
|
42 |
-
def __init__(self, n_fft):
|
43 |
-
super(CascadedASPPNet, self).__init__()
|
44 |
-
self.stg1_low_band_net = BaseASPPNet(2, 32)
|
45 |
-
self.stg1_high_band_net = BaseASPPNet(2, 32)
|
46 |
-
|
47 |
-
self.stg2_bridge = layers.Conv2DBNActiv(34, 16, 1, 1, 0)
|
48 |
-
self.stg2_full_band_net = BaseASPPNet(16, 32)
|
49 |
-
|
50 |
-
self.stg3_bridge = layers.Conv2DBNActiv(66, 32, 1, 1, 0)
|
51 |
-
self.stg3_full_band_net = BaseASPPNet(32, 64)
|
52 |
-
|
53 |
-
self.out = nn.Conv2d(64, 2, 1, bias=False)
|
54 |
-
self.aux1_out = nn.Conv2d(32, 2, 1, bias=False)
|
55 |
-
self.aux2_out = nn.Conv2d(32, 2, 1, bias=False)
|
56 |
-
|
57 |
-
self.max_bin = n_fft // 2
|
58 |
-
self.output_bin = n_fft // 2 + 1
|
59 |
-
|
60 |
-
self.offset = 128
|
61 |
-
|
62 |
-
def forward(self, x, aggressiveness=None):
|
63 |
-
mix = x.detach()
|
64 |
-
x = x.clone()
|
65 |
-
|
66 |
-
x = x[:, :, :self.max_bin]
|
67 |
-
|
68 |
-
bandw = x.size()[2] // 2
|
69 |
-
aux1 = torch.cat([
|
70 |
-
self.stg1_low_band_net(x[:, :, :bandw]),
|
71 |
-
self.stg1_high_band_net(x[:, :, bandw:])
|
72 |
-
], dim=2)
|
73 |
-
|
74 |
-
h = torch.cat([x, aux1], dim=1)
|
75 |
-
aux2 = self.stg2_full_band_net(self.stg2_bridge(h))
|
76 |
-
|
77 |
-
h = torch.cat([x, aux1, aux2], dim=1)
|
78 |
-
h = self.stg3_full_band_net(self.stg3_bridge(h))
|
79 |
-
|
80 |
-
mask = torch.sigmoid(self.out(h))
|
81 |
-
mask = F.pad(
|
82 |
-
input=mask,
|
83 |
-
pad=(0, 0, 0, self.output_bin - mask.size()[2]),
|
84 |
-
mode='replicate')
|
85 |
-
|
86 |
-
if self.training:
|
87 |
-
aux1 = torch.sigmoid(self.aux1_out(aux1))
|
88 |
-
aux1 = F.pad(
|
89 |
-
input=aux1,
|
90 |
-
pad=(0, 0, 0, self.output_bin - aux1.size()[2]),
|
91 |
-
mode='replicate')
|
92 |
-
aux2 = torch.sigmoid(self.aux2_out(aux2))
|
93 |
-
aux2 = F.pad(
|
94 |
-
input=aux2,
|
95 |
-
pad=(0, 0, 0, self.output_bin - aux2.size()[2]),
|
96 |
-
mode='replicate')
|
97 |
-
return mask * mix, aux1 * mix, aux2 * mix
|
98 |
-
else:
|
99 |
-
if aggressiveness:
|
100 |
-
mask[:, :, :aggressiveness['split_bin']] = torch.pow(mask[:, :, :aggressiveness['split_bin']], 1 + aggressiveness['value'] / 3)
|
101 |
-
mask[:, :, aggressiveness['split_bin']:] = torch.pow(mask[:, :, aggressiveness['split_bin']:], 1 + aggressiveness['value'])
|
102 |
-
|
103 |
-
return mask * mix
|
104 |
-
|
105 |
-
def predict(self, x_mag, aggressiveness=None):
|
106 |
-
h = self.forward(x_mag, aggressiveness)
|
107 |
-
|
108 |
-
if self.offset > 0:
|
109 |
-
h = h[:, :, :, self.offset:-self.offset]
|
110 |
-
assert h.size()[3] > 0
|
111 |
-
|
112 |
-
return h
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
uvr5_pack/lib_v5/nets_123821KB.py
DELETED
@@ -1,112 +0,0 @@
|
|
1 |
-
import torch
|
2 |
-
from torch import nn
|
3 |
-
import torch.nn.functional as F
|
4 |
-
|
5 |
-
from uvr5_pack.lib_v5 import layers_123821KB as layers
|
6 |
-
|
7 |
-
|
8 |
-
class BaseASPPNet(nn.Module):
|
9 |
-
|
10 |
-
def __init__(self, nin, ch, dilations=(4, 8, 16)):
|
11 |
-
super(BaseASPPNet, self).__init__()
|
12 |
-
self.enc1 = layers.Encoder(nin, ch, 3, 2, 1)
|
13 |
-
self.enc2 = layers.Encoder(ch, ch * 2, 3, 2, 1)
|
14 |
-
self.enc3 = layers.Encoder(ch * 2, ch * 4, 3, 2, 1)
|
15 |
-
self.enc4 = layers.Encoder(ch * 4, ch * 8, 3, 2, 1)
|
16 |
-
|
17 |
-
self.aspp = layers.ASPPModule(ch * 8, ch * 16, dilations)
|
18 |
-
|
19 |
-
self.dec4 = layers.Decoder(ch * (8 + 16), ch * 8, 3, 1, 1)
|
20 |
-
self.dec3 = layers.Decoder(ch * (4 + 8), ch * 4, 3, 1, 1)
|
21 |
-
self.dec2 = layers.Decoder(ch * (2 + 4), ch * 2, 3, 1, 1)
|
22 |
-
self.dec1 = layers.Decoder(ch * (1 + 2), ch, 3, 1, 1)
|
23 |
-
|
24 |
-
def __call__(self, x):
|
25 |
-
h, e1 = self.enc1(x)
|
26 |
-
h, e2 = self.enc2(h)
|
27 |
-
h, e3 = self.enc3(h)
|
28 |
-
h, e4 = self.enc4(h)
|
29 |
-
|
30 |
-
h = self.aspp(h)
|
31 |
-
|
32 |
-
h = self.dec4(h, e4)
|
33 |
-
h = self.dec3(h, e3)
|
34 |
-
h = self.dec2(h, e2)
|
35 |
-
h = self.dec1(h, e1)
|
36 |
-
|
37 |
-
return h
|
38 |
-
|
39 |
-
|
40 |
-
class CascadedASPPNet(nn.Module):
|
41 |
-
|
42 |
-
def __init__(self, n_fft):
|
43 |
-
super(CascadedASPPNet, self).__init__()
|
44 |
-
self.stg1_low_band_net = BaseASPPNet(2, 32)
|
45 |
-
self.stg1_high_band_net = BaseASPPNet(2, 32)
|
46 |
-
|
47 |
-
self.stg2_bridge = layers.Conv2DBNActiv(34, 16, 1, 1, 0)
|
48 |
-
self.stg2_full_band_net = BaseASPPNet(16, 32)
|
49 |
-
|
50 |
-
self.stg3_bridge = layers.Conv2DBNActiv(66, 32, 1, 1, 0)
|
51 |
-
self.stg3_full_band_net = BaseASPPNet(32, 64)
|
52 |
-
|
53 |
-
self.out = nn.Conv2d(64, 2, 1, bias=False)
|
54 |
-
self.aux1_out = nn.Conv2d(32, 2, 1, bias=False)
|
55 |
-
self.aux2_out = nn.Conv2d(32, 2, 1, bias=False)
|
56 |
-
|
57 |
-
self.max_bin = n_fft // 2
|
58 |
-
self.output_bin = n_fft // 2 + 1
|
59 |
-
|
60 |
-
self.offset = 128
|
61 |
-
|
62 |
-
def forward(self, x, aggressiveness=None):
|
63 |
-
mix = x.detach()
|
64 |
-
x = x.clone()
|
65 |
-
|
66 |
-
x = x[:, :, :self.max_bin]
|
67 |
-
|
68 |
-
bandw = x.size()[2] // 2
|
69 |
-
aux1 = torch.cat([
|
70 |
-
self.stg1_low_band_net(x[:, :, :bandw]),
|
71 |
-
self.stg1_high_band_net(x[:, :, bandw:])
|
72 |
-
], dim=2)
|
73 |
-
|
74 |
-
h = torch.cat([x, aux1], dim=1)
|
75 |
-
aux2 = self.stg2_full_band_net(self.stg2_bridge(h))
|
76 |
-
|
77 |
-
h = torch.cat([x, aux1, aux2], dim=1)
|
78 |
-
h = self.stg3_full_band_net(self.stg3_bridge(h))
|
79 |
-
|
80 |
-
mask = torch.sigmoid(self.out(h))
|
81 |
-
mask = F.pad(
|
82 |
-
input=mask,
|
83 |
-
pad=(0, 0, 0, self.output_bin - mask.size()[2]),
|
84 |
-
mode='replicate')
|
85 |
-
|
86 |
-
if self.training:
|
87 |
-
aux1 = torch.sigmoid(self.aux1_out(aux1))
|
88 |
-
aux1 = F.pad(
|
89 |
-
input=aux1,
|
90 |
-
pad=(0, 0, 0, self.output_bin - aux1.size()[2]),
|
91 |
-
mode='replicate')
|
92 |
-
aux2 = torch.sigmoid(self.aux2_out(aux2))
|
93 |
-
aux2 = F.pad(
|
94 |
-
input=aux2,
|
95 |
-
pad=(0, 0, 0, self.output_bin - aux2.size()[2]),
|
96 |
-
mode='replicate')
|
97 |
-
return mask * mix, aux1 * mix, aux2 * mix
|
98 |
-
else:
|
99 |
-
if aggressiveness:
|
100 |
-
mask[:, :, :aggressiveness['split_bin']] = torch.pow(mask[:, :, :aggressiveness['split_bin']], 1 + aggressiveness['value'] / 3)
|
101 |
-
mask[:, :, aggressiveness['split_bin']:] = torch.pow(mask[:, :, aggressiveness['split_bin']:], 1 + aggressiveness['value'])
|
102 |
-
|
103 |
-
return mask * mix
|
104 |
-
|
105 |
-
def predict(self, x_mag, aggressiveness=None):
|
106 |
-
h = self.forward(x_mag, aggressiveness)
|
107 |
-
|
108 |
-
if self.offset > 0:
|
109 |
-
h = h[:, :, :, self.offset:-self.offset]
|
110 |
-
assert h.size()[3] > 0
|
111 |
-
|
112 |
-
return h
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
uvr5_pack/lib_v5/nets_33966KB.py
DELETED
@@ -1,112 +0,0 @@
|
|
1 |
-
import torch
|
2 |
-
from torch import nn
|
3 |
-
import torch.nn.functional as F
|
4 |
-
|
5 |
-
from uvr5_pack.lib_v5 import layers_33966KB as layers
|
6 |
-
|
7 |
-
|
8 |
-
class BaseASPPNet(nn.Module):
|
9 |
-
|
10 |
-
def __init__(self, nin, ch, dilations=(4, 8, 16, 32)):
|
11 |
-
super(BaseASPPNet, self).__init__()
|
12 |
-
self.enc1 = layers.Encoder(nin, ch, 3, 2, 1)
|
13 |
-
self.enc2 = layers.Encoder(ch, ch * 2, 3, 2, 1)
|
14 |
-
self.enc3 = layers.Encoder(ch * 2, ch * 4, 3, 2, 1)
|
15 |
-
self.enc4 = layers.Encoder(ch * 4, ch * 8, 3, 2, 1)
|
16 |
-
|
17 |
-
self.aspp = layers.ASPPModule(ch * 8, ch * 16, dilations)
|
18 |
-
|
19 |
-
self.dec4 = layers.Decoder(ch * (8 + 16), ch * 8, 3, 1, 1)
|
20 |
-
self.dec3 = layers.Decoder(ch * (4 + 8), ch * 4, 3, 1, 1)
|
21 |
-
self.dec2 = layers.Decoder(ch * (2 + 4), ch * 2, 3, 1, 1)
|
22 |
-
self.dec1 = layers.Decoder(ch * (1 + 2), ch, 3, 1, 1)
|
23 |
-
|
24 |
-
def __call__(self, x):
|
25 |
-
h, e1 = self.enc1(x)
|
26 |
-
h, e2 = self.enc2(h)
|
27 |
-
h, e3 = self.enc3(h)
|
28 |
-
h, e4 = self.enc4(h)
|
29 |
-
|
30 |
-
h = self.aspp(h)
|
31 |
-
|
32 |
-
h = self.dec4(h, e4)
|
33 |
-
h = self.dec3(h, e3)
|
34 |
-
h = self.dec2(h, e2)
|
35 |
-
h = self.dec1(h, e1)
|
36 |
-
|
37 |
-
return h
|
38 |
-
|
39 |
-
|
40 |
-
class CascadedASPPNet(nn.Module):
|
41 |
-
|
42 |
-
def __init__(self, n_fft):
|
43 |
-
super(CascadedASPPNet, self).__init__()
|
44 |
-
self.stg1_low_band_net = BaseASPPNet(2, 16)
|
45 |
-
self.stg1_high_band_net = BaseASPPNet(2, 16)
|
46 |
-
|
47 |
-
self.stg2_bridge = layers.Conv2DBNActiv(18, 8, 1, 1, 0)
|
48 |
-
self.stg2_full_band_net = BaseASPPNet(8, 16)
|
49 |
-
|
50 |
-
self.stg3_bridge = layers.Conv2DBNActiv(34, 16, 1, 1, 0)
|
51 |
-
self.stg3_full_band_net = BaseASPPNet(16, 32)
|
52 |
-
|
53 |
-
self.out = nn.Conv2d(32, 2, 1, bias=False)
|
54 |
-
self.aux1_out = nn.Conv2d(16, 2, 1, bias=False)
|
55 |
-
self.aux2_out = nn.Conv2d(16, 2, 1, bias=False)
|
56 |
-
|
57 |
-
self.max_bin = n_fft // 2
|
58 |
-
self.output_bin = n_fft // 2 + 1
|
59 |
-
|
60 |
-
self.offset = 128
|
61 |
-
|
62 |
-
def forward(self, x, aggressiveness=None):
|
63 |
-
mix = x.detach()
|
64 |
-
x = x.clone()
|
65 |
-
|
66 |
-
x = x[:, :, :self.max_bin]
|
67 |
-
|
68 |
-
bandw = x.size()[2] // 2
|
69 |
-
aux1 = torch.cat([
|
70 |
-
self.stg1_low_band_net(x[:, :, :bandw]),
|
71 |
-
self.stg1_high_band_net(x[:, :, bandw:])
|
72 |
-
], dim=2)
|
73 |
-
|
74 |
-
h = torch.cat([x, aux1], dim=1)
|
75 |
-
aux2 = self.stg2_full_band_net(self.stg2_bridge(h))
|
76 |
-
|
77 |
-
h = torch.cat([x, aux1, aux2], dim=1)
|
78 |
-
h = self.stg3_full_band_net(self.stg3_bridge(h))
|
79 |
-
|
80 |
-
mask = torch.sigmoid(self.out(h))
|
81 |
-
mask = F.pad(
|
82 |
-
input=mask,
|
83 |
-
pad=(0, 0, 0, self.output_bin - mask.size()[2]),
|
84 |
-
mode='replicate')
|
85 |
-
|
86 |
-
if self.training:
|
87 |
-
aux1 = torch.sigmoid(self.aux1_out(aux1))
|
88 |
-
aux1 = F.pad(
|
89 |
-
input=aux1,
|
90 |
-
pad=(0, 0, 0, self.output_bin - aux1.size()[2]),
|
91 |
-
mode='replicate')
|
92 |
-
aux2 = torch.sigmoid(self.aux2_out(aux2))
|
93 |
-
aux2 = F.pad(
|
94 |
-
input=aux2,
|
95 |
-
pad=(0, 0, 0, self.output_bin - aux2.size()[2]),
|
96 |
-
mode='replicate')
|
97 |
-
return mask * mix, aux1 * mix, aux2 * mix
|
98 |
-
else:
|
99 |
-
if aggressiveness:
|
100 |
-
mask[:, :, :aggressiveness['split_bin']] = torch.pow(mask[:, :, :aggressiveness['split_bin']], 1 + aggressiveness['value'] / 3)
|
101 |
-
mask[:, :, aggressiveness['split_bin']:] = torch.pow(mask[:, :, aggressiveness['split_bin']:], 1 + aggressiveness['value'])
|
102 |
-
|
103 |
-
return mask * mix
|
104 |
-
|
105 |
-
def predict(self, x_mag, aggressiveness=None):
|
106 |
-
h = self.forward(x_mag, aggressiveness)
|
107 |
-
|
108 |
-
if self.offset > 0:
|
109 |
-
h = h[:, :, :, self.offset:-self.offset]
|
110 |
-
assert h.size()[3] > 0
|
111 |
-
|
112 |
-
return h
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
uvr5_pack/lib_v5/nets_537227KB.py
DELETED
@@ -1,113 +0,0 @@
|
|
1 |
-
import torch
|
2 |
-
import numpy as np
|
3 |
-
from torch import nn
|
4 |
-
import torch.nn.functional as F
|
5 |
-
|
6 |
-
from uvr5_pack.lib_v5 import layers_537238KB as layers
|
7 |
-
|
8 |
-
|
9 |
-
class BaseASPPNet(nn.Module):
|
10 |
-
|
11 |
-
def __init__(self, nin, ch, dilations=(4, 8, 16)):
|
12 |
-
super(BaseASPPNet, self).__init__()
|
13 |
-
self.enc1 = layers.Encoder(nin, ch, 3, 2, 1)
|
14 |
-
self.enc2 = layers.Encoder(ch, ch * 2, 3, 2, 1)
|
15 |
-
self.enc3 = layers.Encoder(ch * 2, ch * 4, 3, 2, 1)
|
16 |
-
self.enc4 = layers.Encoder(ch * 4, ch * 8, 3, 2, 1)
|
17 |
-
|
18 |
-
self.aspp = layers.ASPPModule(ch * 8, ch * 16, dilations)
|
19 |
-
|
20 |
-
self.dec4 = layers.Decoder(ch * (8 + 16), ch * 8, 3, 1, 1)
|
21 |
-
self.dec3 = layers.Decoder(ch * (4 + 8), ch * 4, 3, 1, 1)
|
22 |
-
self.dec2 = layers.Decoder(ch * (2 + 4), ch * 2, 3, 1, 1)
|
23 |
-
self.dec1 = layers.Decoder(ch * (1 + 2), ch, 3, 1, 1)
|
24 |
-
|
25 |
-
def __call__(self, x):
|
26 |
-
h, e1 = self.enc1(x)
|
27 |
-
h, e2 = self.enc2(h)
|
28 |
-
h, e3 = self.enc3(h)
|
29 |
-
h, e4 = self.enc4(h)
|
30 |
-
|
31 |
-
h = self.aspp(h)
|
32 |
-
|
33 |
-
h = self.dec4(h, e4)
|
34 |
-
h = self.dec3(h, e3)
|
35 |
-
h = self.dec2(h, e2)
|
36 |
-
h = self.dec1(h, e1)
|
37 |
-
|
38 |
-
return h
|
39 |
-
|
40 |
-
|
41 |
-
class CascadedASPPNet(nn.Module):
|
42 |
-
|
43 |
-
def __init__(self, n_fft):
|
44 |
-
super(CascadedASPPNet, self).__init__()
|
45 |
-
self.stg1_low_band_net = BaseASPPNet(2, 64)
|
46 |
-
self.stg1_high_band_net = BaseASPPNet(2, 64)
|
47 |
-
|
48 |
-
self.stg2_bridge = layers.Conv2DBNActiv(66, 32, 1, 1, 0)
|
49 |
-
self.stg2_full_band_net = BaseASPPNet(32, 64)
|
50 |
-
|
51 |
-
self.stg3_bridge = layers.Conv2DBNActiv(130, 64, 1, 1, 0)
|
52 |
-
self.stg3_full_band_net = BaseASPPNet(64, 128)
|
53 |
-
|
54 |
-
self.out = nn.Conv2d(128, 2, 1, bias=False)
|
55 |
-
self.aux1_out = nn.Conv2d(64, 2, 1, bias=False)
|
56 |
-
self.aux2_out = nn.Conv2d(64, 2, 1, bias=False)
|
57 |
-
|
58 |
-
self.max_bin = n_fft // 2
|
59 |
-
self.output_bin = n_fft // 2 + 1
|
60 |
-
|
61 |
-
self.offset = 128
|
62 |
-
|
63 |
-
def forward(self, x, aggressiveness=None):
|
64 |
-
mix = x.detach()
|
65 |
-
x = x.clone()
|
66 |
-
|
67 |
-
x = x[:, :, :self.max_bin]
|
68 |
-
|
69 |
-
bandw = x.size()[2] // 2
|
70 |
-
aux1 = torch.cat([
|
71 |
-
self.stg1_low_band_net(x[:, :, :bandw]),
|
72 |
-
self.stg1_high_band_net(x[:, :, bandw:])
|
73 |
-
], dim=2)
|
74 |
-
|
75 |
-
h = torch.cat([x, aux1], dim=1)
|
76 |
-
aux2 = self.stg2_full_band_net(self.stg2_bridge(h))
|
77 |
-
|
78 |
-
h = torch.cat([x, aux1, aux2], dim=1)
|
79 |
-
h = self.stg3_full_band_net(self.stg3_bridge(h))
|
80 |
-
|
81 |
-
mask = torch.sigmoid(self.out(h))
|
82 |
-
mask = F.pad(
|
83 |
-
input=mask,
|
84 |
-
pad=(0, 0, 0, self.output_bin - mask.size()[2]),
|
85 |
-
mode='replicate')
|
86 |
-
|
87 |
-
if self.training:
|
88 |
-
aux1 = torch.sigmoid(self.aux1_out(aux1))
|
89 |
-
aux1 = F.pad(
|
90 |
-
input=aux1,
|
91 |
-
pad=(0, 0, 0, self.output_bin - aux1.size()[2]),
|
92 |
-
mode='replicate')
|
93 |
-
aux2 = torch.sigmoid(self.aux2_out(aux2))
|
94 |
-
aux2 = F.pad(
|
95 |
-
input=aux2,
|
96 |
-
pad=(0, 0, 0, self.output_bin - aux2.size()[2]),
|
97 |
-
mode='replicate')
|
98 |
-
return mask * mix, aux1 * mix, aux2 * mix
|
99 |
-
else:
|
100 |
-
if aggressiveness:
|
101 |
-
mask[:, :, :aggressiveness['split_bin']] = torch.pow(mask[:, :, :aggressiveness['split_bin']], 1 + aggressiveness['value'] / 3)
|
102 |
-
mask[:, :, aggressiveness['split_bin']:] = torch.pow(mask[:, :, aggressiveness['split_bin']:], 1 + aggressiveness['value'])
|
103 |
-
|
104 |
-
return mask * mix
|
105 |
-
|
106 |
-
def predict(self, x_mag, aggressiveness=None):
|
107 |
-
h = self.forward(x_mag, aggressiveness)
|
108 |
-
|
109 |
-
if self.offset > 0:
|
110 |
-
h = h[:, :, :, self.offset:-self.offset]
|
111 |
-
assert h.size()[3] > 0
|
112 |
-
|
113 |
-
return h
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
uvr5_pack/lib_v5/nets_537238KB.py
DELETED
@@ -1,113 +0,0 @@
|
|
1 |
-
import torch
|
2 |
-
import numpy as np
|
3 |
-
from torch import nn
|
4 |
-
import torch.nn.functional as F
|
5 |
-
|
6 |
-
from uvr5_pack.lib_v5 import layers_537238KB as layers
|
7 |
-
|
8 |
-
|
9 |
-
class BaseASPPNet(nn.Module):
|
10 |
-
|
11 |
-
def __init__(self, nin, ch, dilations=(4, 8, 16)):
|
12 |
-
super(BaseASPPNet, self).__init__()
|
13 |
-
self.enc1 = layers.Encoder(nin, ch, 3, 2, 1)
|
14 |
-
self.enc2 = layers.Encoder(ch, ch * 2, 3, 2, 1)
|
15 |
-
self.enc3 = layers.Encoder(ch * 2, ch * 4, 3, 2, 1)
|
16 |
-
self.enc4 = layers.Encoder(ch * 4, ch * 8, 3, 2, 1)
|
17 |
-
|
18 |
-
self.aspp = layers.ASPPModule(ch * 8, ch * 16, dilations)
|
19 |
-
|
20 |
-
self.dec4 = layers.Decoder(ch * (8 + 16), ch * 8, 3, 1, 1)
|
21 |
-
self.dec3 = layers.Decoder(ch * (4 + 8), ch * 4, 3, 1, 1)
|
22 |
-
self.dec2 = layers.Decoder(ch * (2 + 4), ch * 2, 3, 1, 1)
|
23 |
-
self.dec1 = layers.Decoder(ch * (1 + 2), ch, 3, 1, 1)
|
24 |
-
|
25 |
-
def __call__(self, x):
|
26 |
-
h, e1 = self.enc1(x)
|
27 |
-
h, e2 = self.enc2(h)
|
28 |
-
h, e3 = self.enc3(h)
|
29 |
-
h, e4 = self.enc4(h)
|
30 |
-
|
31 |
-
h = self.aspp(h)
|
32 |
-
|
33 |
-
h = self.dec4(h, e4)
|
34 |
-
h = self.dec3(h, e3)
|
35 |
-
h = self.dec2(h, e2)
|
36 |
-
h = self.dec1(h, e1)
|
37 |
-
|
38 |
-
return h
|
39 |
-
|
40 |
-
|
41 |
-
class CascadedASPPNet(nn.Module):
|
42 |
-
|
43 |
-
def __init__(self, n_fft):
|
44 |
-
super(CascadedASPPNet, self).__init__()
|
45 |
-
self.stg1_low_band_net = BaseASPPNet(2, 64)
|
46 |
-
self.stg1_high_band_net = BaseASPPNet(2, 64)
|
47 |
-
|
48 |
-
self.stg2_bridge = layers.Conv2DBNActiv(66, 32, 1, 1, 0)
|
49 |
-
self.stg2_full_band_net = BaseASPPNet(32, 64)
|
50 |
-
|
51 |
-
self.stg3_bridge = layers.Conv2DBNActiv(130, 64, 1, 1, 0)
|
52 |
-
self.stg3_full_band_net = BaseASPPNet(64, 128)
|
53 |
-
|
54 |
-
self.out = nn.Conv2d(128, 2, 1, bias=False)
|
55 |
-
self.aux1_out = nn.Conv2d(64, 2, 1, bias=False)
|
56 |
-
self.aux2_out = nn.Conv2d(64, 2, 1, bias=False)
|
57 |
-
|
58 |
-
self.max_bin = n_fft // 2
|
59 |
-
self.output_bin = n_fft // 2 + 1
|
60 |
-
|
61 |
-
self.offset = 128
|
62 |
-
|
63 |
-
def forward(self, x, aggressiveness=None):
|
64 |
-
mix = x.detach()
|
65 |
-
x = x.clone()
|
66 |
-
|
67 |
-
x = x[:, :, :self.max_bin]
|
68 |
-
|
69 |
-
bandw = x.size()[2] // 2
|
70 |
-
aux1 = torch.cat([
|
71 |
-
self.stg1_low_band_net(x[:, :, :bandw]),
|
72 |
-
self.stg1_high_band_net(x[:, :, bandw:])
|
73 |
-
], dim=2)
|
74 |
-
|
75 |
-
h = torch.cat([x, aux1], dim=1)
|
76 |
-
aux2 = self.stg2_full_band_net(self.stg2_bridge(h))
|
77 |
-
|
78 |
-
h = torch.cat([x, aux1, aux2], dim=1)
|
79 |
-
h = self.stg3_full_band_net(self.stg3_bridge(h))
|
80 |
-
|
81 |
-
mask = torch.sigmoid(self.out(h))
|
82 |
-
mask = F.pad(
|
83 |
-
input=mask,
|
84 |
-
pad=(0, 0, 0, self.output_bin - mask.size()[2]),
|
85 |
-
mode='replicate')
|
86 |
-
|
87 |
-
if self.training:
|
88 |
-
aux1 = torch.sigmoid(self.aux1_out(aux1))
|
89 |
-
aux1 = F.pad(
|
90 |
-
input=aux1,
|
91 |
-
pad=(0, 0, 0, self.output_bin - aux1.size()[2]),
|
92 |
-
mode='replicate')
|
93 |
-
aux2 = torch.sigmoid(self.aux2_out(aux2))
|
94 |
-
aux2 = F.pad(
|
95 |
-
input=aux2,
|
96 |
-
pad=(0, 0, 0, self.output_bin - aux2.size()[2]),
|
97 |
-
mode='replicate')
|
98 |
-
return mask * mix, aux1 * mix, aux2 * mix
|
99 |
-
else:
|
100 |
-
if aggressiveness:
|
101 |
-
mask[:, :, :aggressiveness['split_bin']] = torch.pow(mask[:, :, :aggressiveness['split_bin']], 1 + aggressiveness['value'] / 3)
|
102 |
-
mask[:, :, aggressiveness['split_bin']:] = torch.pow(mask[:, :, aggressiveness['split_bin']:], 1 + aggressiveness['value'])
|
103 |
-
|
104 |
-
return mask * mix
|
105 |
-
|
106 |
-
def predict(self, x_mag, aggressiveness=None):
|
107 |
-
h = self.forward(x_mag, aggressiveness)
|
108 |
-
|
109 |
-
if self.offset > 0:
|
110 |
-
h = h[:, :, :, self.offset:-self.offset]
|
111 |
-
assert h.size()[3] > 0
|
112 |
-
|
113 |
-
return h
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
uvr5_pack/lib_v5/nets_61968KB.py
DELETED
@@ -1,112 +0,0 @@
|
|
1 |
-
import torch
|
2 |
-
from torch import nn
|
3 |
-
import torch.nn.functional as F
|
4 |
-
|
5 |
-
from uvr5_pack.lib_v5 import layers_123821KB as layers
|
6 |
-
|
7 |
-
|
8 |
-
class BaseASPPNet(nn.Module):
|
9 |
-
|
10 |
-
def __init__(self, nin, ch, dilations=(4, 8, 16)):
|
11 |
-
super(BaseASPPNet, self).__init__()
|
12 |
-
self.enc1 = layers.Encoder(nin, ch, 3, 2, 1)
|
13 |
-
self.enc2 = layers.Encoder(ch, ch * 2, 3, 2, 1)
|
14 |
-
self.enc3 = layers.Encoder(ch * 2, ch * 4, 3, 2, 1)
|
15 |
-
self.enc4 = layers.Encoder(ch * 4, ch * 8, 3, 2, 1)
|
16 |
-
|
17 |
-
self.aspp = layers.ASPPModule(ch * 8, ch * 16, dilations)
|
18 |
-
|
19 |
-
self.dec4 = layers.Decoder(ch * (8 + 16), ch * 8, 3, 1, 1)
|
20 |
-
self.dec3 = layers.Decoder(ch * (4 + 8), ch * 4, 3, 1, 1)
|
21 |
-
self.dec2 = layers.Decoder(ch * (2 + 4), ch * 2, 3, 1, 1)
|
22 |
-
self.dec1 = layers.Decoder(ch * (1 + 2), ch, 3, 1, 1)
|
23 |
-
|
24 |
-
def __call__(self, x):
|
25 |
-
h, e1 = self.enc1(x)
|
26 |
-
h, e2 = self.enc2(h)
|
27 |
-
h, e3 = self.enc3(h)
|
28 |
-
h, e4 = self.enc4(h)
|
29 |
-
|
30 |
-
h = self.aspp(h)
|
31 |
-
|
32 |
-
h = self.dec4(h, e4)
|
33 |
-
h = self.dec3(h, e3)
|
34 |
-
h = self.dec2(h, e2)
|
35 |
-
h = self.dec1(h, e1)
|
36 |
-
|
37 |
-
return h
|
38 |
-
|
39 |
-
|
40 |
-
class CascadedASPPNet(nn.Module):
|
41 |
-
|
42 |
-
def __init__(self, n_fft):
|
43 |
-
super(CascadedASPPNet, self).__init__()
|
44 |
-
self.stg1_low_band_net = BaseASPPNet(2, 32)
|
45 |
-
self.stg1_high_band_net = BaseASPPNet(2, 32)
|
46 |
-
|
47 |
-
self.stg2_bridge = layers.Conv2DBNActiv(34, 16, 1, 1, 0)
|
48 |
-
self.stg2_full_band_net = BaseASPPNet(16, 32)
|
49 |
-
|
50 |
-
self.stg3_bridge = layers.Conv2DBNActiv(66, 32, 1, 1, 0)
|
51 |
-
self.stg3_full_band_net = BaseASPPNet(32, 64)
|
52 |
-
|
53 |
-
self.out = nn.Conv2d(64, 2, 1, bias=False)
|
54 |
-
self.aux1_out = nn.Conv2d(32, 2, 1, bias=False)
|
55 |
-
self.aux2_out = nn.Conv2d(32, 2, 1, bias=False)
|
56 |
-
|
57 |
-
self.max_bin = n_fft // 2
|
58 |
-
self.output_bin = n_fft // 2 + 1
|
59 |
-
|
60 |
-
self.offset = 128
|
61 |
-
|
62 |
-
def forward(self, x, aggressiveness=None):
|
63 |
-
mix = x.detach()
|
64 |
-
x = x.clone()
|
65 |
-
|
66 |
-
x = x[:, :, :self.max_bin]
|
67 |
-
|
68 |
-
bandw = x.size()[2] // 2
|
69 |
-
aux1 = torch.cat([
|
70 |
-
self.stg1_low_band_net(x[:, :, :bandw]),
|
71 |
-
self.stg1_high_band_net(x[:, :, bandw:])
|
72 |
-
], dim=2)
|
73 |
-
|
74 |
-
h = torch.cat([x, aux1], dim=1)
|
75 |
-
aux2 = self.stg2_full_band_net(self.stg2_bridge(h))
|
76 |
-
|
77 |
-
h = torch.cat([x, aux1, aux2], dim=1)
|
78 |
-
h = self.stg3_full_band_net(self.stg3_bridge(h))
|
79 |
-
|
80 |
-
mask = torch.sigmoid(self.out(h))
|
81 |
-
mask = F.pad(
|
82 |
-
input=mask,
|
83 |
-
pad=(0, 0, 0, self.output_bin - mask.size()[2]),
|
84 |
-
mode='replicate')
|
85 |
-
|
86 |
-
if self.training:
|
87 |
-
aux1 = torch.sigmoid(self.aux1_out(aux1))
|
88 |
-
aux1 = F.pad(
|
89 |
-
input=aux1,
|
90 |
-
pad=(0, 0, 0, self.output_bin - aux1.size()[2]),
|
91 |
-
mode='replicate')
|
92 |
-
aux2 = torch.sigmoid(self.aux2_out(aux2))
|
93 |
-
aux2 = F.pad(
|
94 |
-
input=aux2,
|
95 |
-
pad=(0, 0, 0, self.output_bin - aux2.size()[2]),
|
96 |
-
mode='replicate')
|
97 |
-
return mask * mix, aux1 * mix, aux2 * mix
|
98 |
-
else:
|
99 |
-
if aggressiveness:
|
100 |
-
mask[:, :, :aggressiveness['split_bin']] = torch.pow(mask[:, :, :aggressiveness['split_bin']], 1 + aggressiveness['value'] / 3)
|
101 |
-
mask[:, :, aggressiveness['split_bin']:] = torch.pow(mask[:, :, aggressiveness['split_bin']:], 1 + aggressiveness['value'])
|
102 |
-
|
103 |
-
return mask * mix
|
104 |
-
|
105 |
-
def predict(self, x_mag, aggressiveness=None):
|
106 |
-
h = self.forward(x_mag, aggressiveness)
|
107 |
-
|
108 |
-
if self.offset > 0:
|
109 |
-
h = h[:, :, :, self.offset:-self.offset]
|
110 |
-
assert h.size()[3] > 0
|
111 |
-
|
112 |
-
return h
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
uvr5_pack/lib_v5/spec_utils.py
DELETED
@@ -1,485 +0,0 @@
|
|
1 |
-
import os,librosa
|
2 |
-
import numpy as np
|
3 |
-
import soundfile as sf
|
4 |
-
from tqdm import tqdm
|
5 |
-
import json,math ,hashlib
|
6 |
-
|
7 |
-
def crop_center(h1, h2):
|
8 |
-
h1_shape = h1.size()
|
9 |
-
h2_shape = h2.size()
|
10 |
-
|
11 |
-
if h1_shape[3] == h2_shape[3]:
|
12 |
-
return h1
|
13 |
-
elif h1_shape[3] < h2_shape[3]:
|
14 |
-
raise ValueError('h1_shape[3] must be greater than h2_shape[3]')
|
15 |
-
|
16 |
-
# s_freq = (h2_shape[2] - h1_shape[2]) // 2
|
17 |
-
# e_freq = s_freq + h1_shape[2]
|
18 |
-
s_time = (h1_shape[3] - h2_shape[3]) // 2
|
19 |
-
e_time = s_time + h2_shape[3]
|
20 |
-
h1 = h1[:, :, :, s_time:e_time]
|
21 |
-
|
22 |
-
return h1
|
23 |
-
|
24 |
-
|
25 |
-
def wave_to_spectrogram(wave, hop_length, n_fft, mid_side=False, mid_side_b2=False, reverse=False):
|
26 |
-
if reverse:
|
27 |
-
wave_left = np.flip(np.asfortranarray(wave[0]))
|
28 |
-
wave_right = np.flip(np.asfortranarray(wave[1]))
|
29 |
-
elif mid_side:
|
30 |
-
wave_left = np.asfortranarray(np.add(wave[0], wave[1]) / 2)
|
31 |
-
wave_right = np.asfortranarray(np.subtract(wave[0], wave[1]))
|
32 |
-
elif mid_side_b2:
|
33 |
-
wave_left = np.asfortranarray(np.add(wave[1], wave[0] * .5))
|
34 |
-
wave_right = np.asfortranarray(np.subtract(wave[0], wave[1] * .5))
|
35 |
-
else:
|
36 |
-
wave_left = np.asfortranarray(wave[0])
|
37 |
-
wave_right = np.asfortranarray(wave[1])
|
38 |
-
|
39 |
-
spec_left = librosa.stft(wave_left, n_fft, hop_length=hop_length)
|
40 |
-
spec_right = librosa.stft(wave_right, n_fft, hop_length=hop_length)
|
41 |
-
|
42 |
-
spec = np.asfortranarray([spec_left, spec_right])
|
43 |
-
|
44 |
-
return spec
|
45 |
-
|
46 |
-
|
47 |
-
def wave_to_spectrogram_mt(wave, hop_length, n_fft, mid_side=False, mid_side_b2=False, reverse=False):
|
48 |
-
import threading
|
49 |
-
|
50 |
-
if reverse:
|
51 |
-
wave_left = np.flip(np.asfortranarray(wave[0]))
|
52 |
-
wave_right = np.flip(np.asfortranarray(wave[1]))
|
53 |
-
elif mid_side:
|
54 |
-
wave_left = np.asfortranarray(np.add(wave[0], wave[1]) / 2)
|
55 |
-
wave_right = np.asfortranarray(np.subtract(wave[0], wave[1]))
|
56 |
-
elif mid_side_b2:
|
57 |
-
wave_left = np.asfortranarray(np.add(wave[1], wave[0] * .5))
|
58 |
-
wave_right = np.asfortranarray(np.subtract(wave[0], wave[1] * .5))
|
59 |
-
else:
|
60 |
-
wave_left = np.asfortranarray(wave[0])
|
61 |
-
wave_right = np.asfortranarray(wave[1])
|
62 |
-
|
63 |
-
def run_thread(**kwargs):
|
64 |
-
global spec_left
|
65 |
-
spec_left = librosa.stft(**kwargs)
|
66 |
-
|
67 |
-
thread = threading.Thread(target=run_thread, kwargs={'y': wave_left, 'n_fft': n_fft, 'hop_length': hop_length})
|
68 |
-
thread.start()
|
69 |
-
spec_right = librosa.stft(wave_right, n_fft, hop_length=hop_length)
|
70 |
-
thread.join()
|
71 |
-
|
72 |
-
spec = np.asfortranarray([spec_left, spec_right])
|
73 |
-
|
74 |
-
return spec
|
75 |
-
|
76 |
-
|
77 |
-
def combine_spectrograms(specs, mp):
|
78 |
-
l = min([specs[i].shape[2] for i in specs])
|
79 |
-
spec_c = np.zeros(shape=(2, mp.param['bins'] + 1, l), dtype=np.complex64)
|
80 |
-
offset = 0
|
81 |
-
bands_n = len(mp.param['band'])
|
82 |
-
|
83 |
-
for d in range(1, bands_n + 1):
|
84 |
-
h = mp.param['band'][d]['crop_stop'] - mp.param['band'][d]['crop_start']
|
85 |
-
spec_c[:, offset:offset+h, :l] = specs[d][:, mp.param['band'][d]['crop_start']:mp.param['band'][d]['crop_stop'], :l]
|
86 |
-
offset += h
|
87 |
-
|
88 |
-
if offset > mp.param['bins']:
|
89 |
-
raise ValueError('Too much bins')
|
90 |
-
|
91 |
-
# lowpass fiter
|
92 |
-
if mp.param['pre_filter_start'] > 0: # and mp.param['band'][bands_n]['res_type'] in ['scipy', 'polyphase']:
|
93 |
-
if bands_n == 1:
|
94 |
-
spec_c = fft_lp_filter(spec_c, mp.param['pre_filter_start'], mp.param['pre_filter_stop'])
|
95 |
-
else:
|
96 |
-
gp = 1
|
97 |
-
for b in range(mp.param['pre_filter_start'] + 1, mp.param['pre_filter_stop']):
|
98 |
-
g = math.pow(10, -(b - mp.param['pre_filter_start']) * (3.5 - gp) / 20.0)
|
99 |
-
gp = g
|
100 |
-
spec_c[:, b, :] *= g
|
101 |
-
|
102 |
-
return np.asfortranarray(spec_c)
|
103 |
-
|
104 |
-
|
105 |
-
def spectrogram_to_image(spec, mode='magnitude'):
|
106 |
-
if mode == 'magnitude':
|
107 |
-
if np.iscomplexobj(spec):
|
108 |
-
y = np.abs(spec)
|
109 |
-
else:
|
110 |
-
y = spec
|
111 |
-
y = np.log10(y ** 2 + 1e-8)
|
112 |
-
elif mode == 'phase':
|
113 |
-
if np.iscomplexobj(spec):
|
114 |
-
y = np.angle(spec)
|
115 |
-
else:
|
116 |
-
y = spec
|
117 |
-
|
118 |
-
y -= y.min()
|
119 |
-
y *= 255 / y.max()
|
120 |
-
img = np.uint8(y)
|
121 |
-
|
122 |
-
if y.ndim == 3:
|
123 |
-
img = img.transpose(1, 2, 0)
|
124 |
-
img = np.concatenate([
|
125 |
-
np.max(img, axis=2, keepdims=True), img
|
126 |
-
], axis=2)
|
127 |
-
|
128 |
-
return img
|
129 |
-
|
130 |
-
|
131 |
-
def reduce_vocal_aggressively(X, y, softmask):
|
132 |
-
v = X - y
|
133 |
-
y_mag_tmp = np.abs(y)
|
134 |
-
v_mag_tmp = np.abs(v)
|
135 |
-
|
136 |
-
v_mask = v_mag_tmp > y_mag_tmp
|
137 |
-
y_mag = np.clip(y_mag_tmp - v_mag_tmp * v_mask * softmask, 0, np.inf)
|
138 |
-
|
139 |
-
return y_mag * np.exp(1.j * np.angle(y))
|
140 |
-
|
141 |
-
|
142 |
-
def mask_silence(mag, ref, thres=0.2, min_range=64, fade_size=32):
|
143 |
-
if min_range < fade_size * 2:
|
144 |
-
raise ValueError('min_range must be >= fade_area * 2')
|
145 |
-
|
146 |
-
mag = mag.copy()
|
147 |
-
|
148 |
-
idx = np.where(ref.mean(axis=(0, 1)) < thres)[0]
|
149 |
-
starts = np.insert(idx[np.where(np.diff(idx) != 1)[0] + 1], 0, idx[0])
|
150 |
-
ends = np.append(idx[np.where(np.diff(idx) != 1)[0]], idx[-1])
|
151 |
-
uninformative = np.where(ends - starts > min_range)[0]
|
152 |
-
if len(uninformative) > 0:
|
153 |
-
starts = starts[uninformative]
|
154 |
-
ends = ends[uninformative]
|
155 |
-
old_e = None
|
156 |
-
for s, e in zip(starts, ends):
|
157 |
-
if old_e is not None and s - old_e < fade_size:
|
158 |
-
s = old_e - fade_size * 2
|
159 |
-
|
160 |
-
if s != 0:
|
161 |
-
weight = np.linspace(0, 1, fade_size)
|
162 |
-
mag[:, :, s:s + fade_size] += weight * ref[:, :, s:s + fade_size]
|
163 |
-
else:
|
164 |
-
s -= fade_size
|
165 |
-
|
166 |
-
if e != mag.shape[2]:
|
167 |
-
weight = np.linspace(1, 0, fade_size)
|
168 |
-
mag[:, :, e - fade_size:e] += weight * ref[:, :, e - fade_size:e]
|
169 |
-
else:
|
170 |
-
e += fade_size
|
171 |
-
|
172 |
-
mag[:, :, s + fade_size:e - fade_size] += ref[:, :, s + fade_size:e - fade_size]
|
173 |
-
old_e = e
|
174 |
-
|
175 |
-
return mag
|
176 |
-
|
177 |
-
|
178 |
-
def align_wave_head_and_tail(a, b):
|
179 |
-
l = min([a[0].size, b[0].size])
|
180 |
-
|
181 |
-
return a[:l,:l], b[:l,:l]
|
182 |
-
|
183 |
-
|
184 |
-
def cache_or_load(mix_path, inst_path, mp):
|
185 |
-
mix_basename = os.path.splitext(os.path.basename(mix_path))[0]
|
186 |
-
inst_basename = os.path.splitext(os.path.basename(inst_path))[0]
|
187 |
-
|
188 |
-
cache_dir = 'mph{}'.format(hashlib.sha1(json.dumps(mp.param, sort_keys=True).encode('utf-8')).hexdigest())
|
189 |
-
mix_cache_dir = os.path.join('cache', cache_dir)
|
190 |
-
inst_cache_dir = os.path.join('cache', cache_dir)
|
191 |
-
|
192 |
-
os.makedirs(mix_cache_dir, exist_ok=True)
|
193 |
-
os.makedirs(inst_cache_dir, exist_ok=True)
|
194 |
-
|
195 |
-
mix_cache_path = os.path.join(mix_cache_dir, mix_basename + '.npy')
|
196 |
-
inst_cache_path = os.path.join(inst_cache_dir, inst_basename + '.npy')
|
197 |
-
|
198 |
-
if os.path.exists(mix_cache_path) and os.path.exists(inst_cache_path):
|
199 |
-
X_spec_m = np.load(mix_cache_path)
|
200 |
-
y_spec_m = np.load(inst_cache_path)
|
201 |
-
else:
|
202 |
-
X_wave, y_wave, X_spec_s, y_spec_s = {}, {}, {}, {}
|
203 |
-
|
204 |
-
for d in range(len(mp.param['band']), 0, -1):
|
205 |
-
bp = mp.param['band'][d]
|
206 |
-
|
207 |
-
if d == len(mp.param['band']): # high-end band
|
208 |
-
X_wave[d], _ = librosa.load(
|
209 |
-
mix_path, bp['sr'], False, dtype=np.float32, res_type=bp['res_type'])
|
210 |
-
y_wave[d], _ = librosa.load(
|
211 |
-
inst_path, bp['sr'], False, dtype=np.float32, res_type=bp['res_type'])
|
212 |
-
else: # lower bands
|
213 |
-
X_wave[d] = librosa.resample(X_wave[d+1], mp.param['band'][d+1]['sr'], bp['sr'], res_type=bp['res_type'])
|
214 |
-
y_wave[d] = librosa.resample(y_wave[d+1], mp.param['band'][d+1]['sr'], bp['sr'], res_type=bp['res_type'])
|
215 |
-
|
216 |
-
X_wave[d], y_wave[d] = align_wave_head_and_tail(X_wave[d], y_wave[d])
|
217 |
-
|
218 |
-
X_spec_s[d] = wave_to_spectrogram(X_wave[d], bp['hl'], bp['n_fft'], mp.param['mid_side'], mp.param['mid_side_b2'], mp.param['reverse'])
|
219 |
-
y_spec_s[d] = wave_to_spectrogram(y_wave[d], bp['hl'], bp['n_fft'], mp.param['mid_side'], mp.param['mid_side_b2'], mp.param['reverse'])
|
220 |
-
|
221 |
-
del X_wave, y_wave
|
222 |
-
|
223 |
-
X_spec_m = combine_spectrograms(X_spec_s, mp)
|
224 |
-
y_spec_m = combine_spectrograms(y_spec_s, mp)
|
225 |
-
|
226 |
-
if X_spec_m.shape != y_spec_m.shape:
|
227 |
-
raise ValueError('The combined spectrograms are different: ' + mix_path)
|
228 |
-
|
229 |
-
_, ext = os.path.splitext(mix_path)
|
230 |
-
|
231 |
-
np.save(mix_cache_path, X_spec_m)
|
232 |
-
np.save(inst_cache_path, y_spec_m)
|
233 |
-
|
234 |
-
return X_spec_m, y_spec_m
|
235 |
-
|
236 |
-
|
237 |
-
def spectrogram_to_wave(spec, hop_length, mid_side, mid_side_b2, reverse):
|
238 |
-
spec_left = np.asfortranarray(spec[0])
|
239 |
-
spec_right = np.asfortranarray(spec[1])
|
240 |
-
|
241 |
-
wave_left = librosa.istft(spec_left, hop_length=hop_length)
|
242 |
-
wave_right = librosa.istft(spec_right, hop_length=hop_length)
|
243 |
-
|
244 |
-
if reverse:
|
245 |
-
return np.asfortranarray([np.flip(wave_left), np.flip(wave_right)])
|
246 |
-
elif mid_side:
|
247 |
-
return np.asfortranarray([np.add(wave_left, wave_right / 2), np.subtract(wave_left, wave_right / 2)])
|
248 |
-
elif mid_side_b2:
|
249 |
-
return np.asfortranarray([np.add(wave_right / 1.25, .4 * wave_left), np.subtract(wave_left / 1.25, .4 * wave_right)])
|
250 |
-
else:
|
251 |
-
return np.asfortranarray([wave_left, wave_right])
|
252 |
-
|
253 |
-
|
254 |
-
def spectrogram_to_wave_mt(spec, hop_length, mid_side, reverse, mid_side_b2):
|
255 |
-
import threading
|
256 |
-
|
257 |
-
spec_left = np.asfortranarray(spec[0])
|
258 |
-
spec_right = np.asfortranarray(spec[1])
|
259 |
-
|
260 |
-
def run_thread(**kwargs):
|
261 |
-
global wave_left
|
262 |
-
wave_left = librosa.istft(**kwargs)
|
263 |
-
|
264 |
-
thread = threading.Thread(target=run_thread, kwargs={'stft_matrix': spec_left, 'hop_length': hop_length})
|
265 |
-
thread.start()
|
266 |
-
wave_right = librosa.istft(spec_right, hop_length=hop_length)
|
267 |
-
thread.join()
|
268 |
-
|
269 |
-
if reverse:
|
270 |
-
return np.asfortranarray([np.flip(wave_left), np.flip(wave_right)])
|
271 |
-
elif mid_side:
|
272 |
-
return np.asfortranarray([np.add(wave_left, wave_right / 2), np.subtract(wave_left, wave_right / 2)])
|
273 |
-
elif mid_side_b2:
|
274 |
-
return np.asfortranarray([np.add(wave_right / 1.25, .4 * wave_left), np.subtract(wave_left / 1.25, .4 * wave_right)])
|
275 |
-
else:
|
276 |
-
return np.asfortranarray([wave_left, wave_right])
|
277 |
-
|
278 |
-
|
279 |
-
def cmb_spectrogram_to_wave(spec_m, mp, extra_bins_h=None, extra_bins=None):
|
280 |
-
wave_band = {}
|
281 |
-
bands_n = len(mp.param['band'])
|
282 |
-
offset = 0
|
283 |
-
|
284 |
-
for d in range(1, bands_n + 1):
|
285 |
-
bp = mp.param['band'][d]
|
286 |
-
spec_s = np.ndarray(shape=(2, bp['n_fft'] // 2 + 1, spec_m.shape[2]), dtype=complex)
|
287 |
-
h = bp['crop_stop'] - bp['crop_start']
|
288 |
-
spec_s[:, bp['crop_start']:bp['crop_stop'], :] = spec_m[:, offset:offset+h, :]
|
289 |
-
|
290 |
-
offset += h
|
291 |
-
if d == bands_n: # higher
|
292 |
-
if extra_bins_h: # if --high_end_process bypass
|
293 |
-
max_bin = bp['n_fft'] // 2
|
294 |
-
spec_s[:, max_bin-extra_bins_h:max_bin, :] = extra_bins[:, :extra_bins_h, :]
|
295 |
-
if bp['hpf_start'] > 0:
|
296 |
-
spec_s = fft_hp_filter(spec_s, bp['hpf_start'], bp['hpf_stop'] - 1)
|
297 |
-
if bands_n == 1:
|
298 |
-
wave = spectrogram_to_wave(spec_s, bp['hl'], mp.param['mid_side'], mp.param['mid_side_b2'], mp.param['reverse'])
|
299 |
-
else:
|
300 |
-
wave = np.add(wave, spectrogram_to_wave(spec_s, bp['hl'], mp.param['mid_side'], mp.param['mid_side_b2'], mp.param['reverse']))
|
301 |
-
else:
|
302 |
-
sr = mp.param['band'][d+1]['sr']
|
303 |
-
if d == 1: # lower
|
304 |
-
spec_s = fft_lp_filter(spec_s, bp['lpf_start'], bp['lpf_stop'])
|
305 |
-
wave = librosa.resample(spectrogram_to_wave(spec_s, bp['hl'], mp.param['mid_side'], mp.param['mid_side_b2'], mp.param['reverse']), bp['sr'], sr, res_type="sinc_fastest")
|
306 |
-
else: # mid
|
307 |
-
spec_s = fft_hp_filter(spec_s, bp['hpf_start'], bp['hpf_stop'] - 1)
|
308 |
-
spec_s = fft_lp_filter(spec_s, bp['lpf_start'], bp['lpf_stop'])
|
309 |
-
wave2 = np.add(wave, spectrogram_to_wave(spec_s, bp['hl'], mp.param['mid_side'], mp.param['mid_side_b2'], mp.param['reverse']))
|
310 |
-
# wave = librosa.core.resample(wave2, bp['sr'], sr, res_type="sinc_fastest")
|
311 |
-
wave = librosa.core.resample(wave2, bp['sr'], sr,res_type='scipy')
|
312 |
-
|
313 |
-
return wave.T
|
314 |
-
|
315 |
-
|
316 |
-
def fft_lp_filter(spec, bin_start, bin_stop):
|
317 |
-
g = 1.0
|
318 |
-
for b in range(bin_start, bin_stop):
|
319 |
-
g -= 1 / (bin_stop - bin_start)
|
320 |
-
spec[:, b, :] = g * spec[:, b, :]
|
321 |
-
|
322 |
-
spec[:, bin_stop:, :] *= 0
|
323 |
-
|
324 |
-
return spec
|
325 |
-
|
326 |
-
|
327 |
-
def fft_hp_filter(spec, bin_start, bin_stop):
|
328 |
-
g = 1.0
|
329 |
-
for b in range(bin_start, bin_stop, -1):
|
330 |
-
g -= 1 / (bin_start - bin_stop)
|
331 |
-
spec[:, b, :] = g * spec[:, b, :]
|
332 |
-
|
333 |
-
spec[:, 0:bin_stop+1, :] *= 0
|
334 |
-
|
335 |
-
return spec
|
336 |
-
|
337 |
-
|
338 |
-
def mirroring(a, spec_m, input_high_end, mp):
|
339 |
-
if 'mirroring' == a:
|
340 |
-
mirror = np.flip(np.abs(spec_m[:, mp.param['pre_filter_start']-10-input_high_end.shape[1]:mp.param['pre_filter_start']-10, :]), 1)
|
341 |
-
mirror = mirror * np.exp(1.j * np.angle(input_high_end))
|
342 |
-
|
343 |
-
return np.where(np.abs(input_high_end) <= np.abs(mirror), input_high_end, mirror)
|
344 |
-
|
345 |
-
if 'mirroring2' == a:
|
346 |
-
mirror = np.flip(np.abs(spec_m[:, mp.param['pre_filter_start']-10-input_high_end.shape[1]:mp.param['pre_filter_start']-10, :]), 1)
|
347 |
-
mi = np.multiply(mirror, input_high_end * 1.7)
|
348 |
-
|
349 |
-
return np.where(np.abs(input_high_end) <= np.abs(mi), input_high_end, mi)
|
350 |
-
|
351 |
-
|
352 |
-
def ensembling(a, specs):
|
353 |
-
for i in range(1, len(specs)):
|
354 |
-
if i == 1:
|
355 |
-
spec = specs[0]
|
356 |
-
|
357 |
-
ln = min([spec.shape[2], specs[i].shape[2]])
|
358 |
-
spec = spec[:,:,:ln]
|
359 |
-
specs[i] = specs[i][:,:,:ln]
|
360 |
-
|
361 |
-
if 'min_mag' == a:
|
362 |
-
spec = np.where(np.abs(specs[i]) <= np.abs(spec), specs[i], spec)
|
363 |
-
if 'max_mag' == a:
|
364 |
-
spec = np.where(np.abs(specs[i]) >= np.abs(spec), specs[i], spec)
|
365 |
-
|
366 |
-
return spec
|
367 |
-
|
368 |
-
def stft(wave, nfft, hl):
|
369 |
-
wave_left = np.asfortranarray(wave[0])
|
370 |
-
wave_right = np.asfortranarray(wave[1])
|
371 |
-
spec_left = librosa.stft(wave_left, nfft, hop_length=hl)
|
372 |
-
spec_right = librosa.stft(wave_right, nfft, hop_length=hl)
|
373 |
-
spec = np.asfortranarray([spec_left, spec_right])
|
374 |
-
|
375 |
-
return spec
|
376 |
-
|
377 |
-
def istft(spec, hl):
|
378 |
-
spec_left = np.asfortranarray(spec[0])
|
379 |
-
spec_right = np.asfortranarray(spec[1])
|
380 |
-
|
381 |
-
wave_left = librosa.istft(spec_left, hop_length=hl)
|
382 |
-
wave_right = librosa.istft(spec_right, hop_length=hl)
|
383 |
-
wave = np.asfortranarray([wave_left, wave_right])
|
384 |
-
|
385 |
-
|
386 |
-
if __name__ == "__main__":
|
387 |
-
import cv2
|
388 |
-
import sys
|
389 |
-
import time
|
390 |
-
import argparse
|
391 |
-
from model_param_init import ModelParameters
|
392 |
-
|
393 |
-
p = argparse.ArgumentParser()
|
394 |
-
p.add_argument('--algorithm', '-a', type=str, choices=['invert', 'invert_p', 'min_mag', 'max_mag', 'deep', 'align'], default='min_mag')
|
395 |
-
p.add_argument('--model_params', '-m', type=str, default=os.path.join('modelparams', '1band_sr44100_hl512.json'))
|
396 |
-
p.add_argument('--output_name', '-o', type=str, default='output')
|
397 |
-
p.add_argument('--vocals_only', '-v', action='store_true')
|
398 |
-
p.add_argument('input', nargs='+')
|
399 |
-
args = p.parse_args()
|
400 |
-
|
401 |
-
start_time = time.time()
|
402 |
-
|
403 |
-
if args.algorithm.startswith('invert') and len(args.input) != 2:
|
404 |
-
raise ValueError('There should be two input files.')
|
405 |
-
|
406 |
-
if not args.algorithm.startswith('invert') and len(args.input) < 2:
|
407 |
-
raise ValueError('There must be at least two input files.')
|
408 |
-
|
409 |
-
wave, specs = {}, {}
|
410 |
-
mp = ModelParameters(args.model_params)
|
411 |
-
|
412 |
-
for i in range(len(args.input)):
|
413 |
-
spec = {}
|
414 |
-
|
415 |
-
for d in range(len(mp.param['band']), 0, -1):
|
416 |
-
bp = mp.param['band'][d]
|
417 |
-
|
418 |
-
if d == len(mp.param['band']): # high-end band
|
419 |
-
wave[d], _ = librosa.load(
|
420 |
-
args.input[i], bp['sr'], False, dtype=np.float32, res_type=bp['res_type'])
|
421 |
-
|
422 |
-
if len(wave[d].shape) == 1: # mono to stereo
|
423 |
-
wave[d] = np.array([wave[d], wave[d]])
|
424 |
-
else: # lower bands
|
425 |
-
wave[d] = librosa.resample(wave[d+1], mp.param['band'][d+1]['sr'], bp['sr'], res_type=bp['res_type'])
|
426 |
-
|
427 |
-
spec[d] = wave_to_spectrogram(wave[d], bp['hl'], bp['n_fft'], mp.param['mid_side'], mp.param['mid_side_b2'], mp.param['reverse'])
|
428 |
-
|
429 |
-
specs[i] = combine_spectrograms(spec, mp)
|
430 |
-
|
431 |
-
del wave
|
432 |
-
|
433 |
-
if args.algorithm == 'deep':
|
434 |
-
d_spec = np.where(np.abs(specs[0]) <= np.abs(spec[1]), specs[0], spec[1])
|
435 |
-
v_spec = d_spec - specs[1]
|
436 |
-
sf.write(os.path.join('{}.wav'.format(args.output_name)), cmb_spectrogram_to_wave(v_spec, mp), mp.param['sr'])
|
437 |
-
|
438 |
-
if args.algorithm.startswith('invert'):
|
439 |
-
ln = min([specs[0].shape[2], specs[1].shape[2]])
|
440 |
-
specs[0] = specs[0][:,:,:ln]
|
441 |
-
specs[1] = specs[1][:,:,:ln]
|
442 |
-
|
443 |
-
if 'invert_p' == args.algorithm:
|
444 |
-
X_mag = np.abs(specs[0])
|
445 |
-
y_mag = np.abs(specs[1])
|
446 |
-
max_mag = np.where(X_mag >= y_mag, X_mag, y_mag)
|
447 |
-
v_spec = specs[1] - max_mag * np.exp(1.j * np.angle(specs[0]))
|
448 |
-
else:
|
449 |
-
specs[1] = reduce_vocal_aggressively(specs[0], specs[1], 0.2)
|
450 |
-
v_spec = specs[0] - specs[1]
|
451 |
-
|
452 |
-
if not args.vocals_only:
|
453 |
-
X_mag = np.abs(specs[0])
|
454 |
-
y_mag = np.abs(specs[1])
|
455 |
-
v_mag = np.abs(v_spec)
|
456 |
-
|
457 |
-
X_image = spectrogram_to_image(X_mag)
|
458 |
-
y_image = spectrogram_to_image(y_mag)
|
459 |
-
v_image = spectrogram_to_image(v_mag)
|
460 |
-
|
461 |
-
cv2.imwrite('{}_X.png'.format(args.output_name), X_image)
|
462 |
-
cv2.imwrite('{}_y.png'.format(args.output_name), y_image)
|
463 |
-
cv2.imwrite('{}_v.png'.format(args.output_name), v_image)
|
464 |
-
|
465 |
-
sf.write('{}_X.wav'.format(args.output_name), cmb_spectrogram_to_wave(specs[0], mp), mp.param['sr'])
|
466 |
-
sf.write('{}_y.wav'.format(args.output_name), cmb_spectrogram_to_wave(specs[1], mp), mp.param['sr'])
|
467 |
-
|
468 |
-
sf.write('{}_v.wav'.format(args.output_name), cmb_spectrogram_to_wave(v_spec, mp), mp.param['sr'])
|
469 |
-
else:
|
470 |
-
if not args.algorithm == 'deep':
|
471 |
-
sf.write(os.path.join('ensembled','{}.wav'.format(args.output_name)), cmb_spectrogram_to_wave(ensembling(args.algorithm, specs), mp), mp.param['sr'])
|
472 |
-
|
473 |
-
if args.algorithm == 'align':
|
474 |
-
|
475 |
-
trackalignment = [
|
476 |
-
{
|
477 |
-
'file1':'"{}"'.format(args.input[0]),
|
478 |
-
'file2':'"{}"'.format(args.input[1])
|
479 |
-
}
|
480 |
-
]
|
481 |
-
|
482 |
-
for i,e in tqdm(enumerate(trackalignment), desc="Performing Alignment..."):
|
483 |
-
os.system(f"python lib/align_tracks.py {e['file1']} {e['file2']}")
|
484 |
-
|
485 |
-
#print('Total time: {0:.{1}f}s'.format(time.time() - start_time, 1))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
uvr5_pack/utils.py
DELETED
@@ -1,242 +0,0 @@
|
|
1 |
-
import torch
|
2 |
-
import numpy as np
|
3 |
-
from tqdm import tqdm
|
4 |
-
|
5 |
-
def make_padding(width, cropsize, offset):
|
6 |
-
left = offset
|
7 |
-
roi_size = cropsize - left * 2
|
8 |
-
if roi_size == 0:
|
9 |
-
roi_size = cropsize
|
10 |
-
right = roi_size - (width % roi_size) + left
|
11 |
-
|
12 |
-
return left, right, roi_size
|
13 |
-
def inference(X_spec, device, model, aggressiveness,data):
|
14 |
-
'''
|
15 |
-
data : dic configs
|
16 |
-
'''
|
17 |
-
|
18 |
-
def _execute(X_mag_pad, roi_size, n_window, device, model, aggressiveness,is_half=True):
|
19 |
-
model.eval()
|
20 |
-
with torch.no_grad():
|
21 |
-
preds = []
|
22 |
-
|
23 |
-
iterations = [n_window]
|
24 |
-
|
25 |
-
total_iterations = sum(iterations)
|
26 |
-
for i in tqdm(range(n_window)):
|
27 |
-
start = i * roi_size
|
28 |
-
X_mag_window = X_mag_pad[None, :, :, start:start + data['window_size']]
|
29 |
-
X_mag_window = torch.from_numpy(X_mag_window)
|
30 |
-
if(is_half==True):X_mag_window=X_mag_window.half()
|
31 |
-
X_mag_window=X_mag_window.to(device)
|
32 |
-
|
33 |
-
pred = model.predict(X_mag_window, aggressiveness)
|
34 |
-
|
35 |
-
pred = pred.detach().cpu().numpy()
|
36 |
-
preds.append(pred[0])
|
37 |
-
|
38 |
-
pred = np.concatenate(preds, axis=2)
|
39 |
-
return pred
|
40 |
-
|
41 |
-
def preprocess(X_spec):
|
42 |
-
X_mag = np.abs(X_spec)
|
43 |
-
X_phase = np.angle(X_spec)
|
44 |
-
|
45 |
-
return X_mag, X_phase
|
46 |
-
|
47 |
-
X_mag, X_phase = preprocess(X_spec)
|
48 |
-
|
49 |
-
coef = X_mag.max()
|
50 |
-
X_mag_pre = X_mag / coef
|
51 |
-
|
52 |
-
n_frame = X_mag_pre.shape[2]
|
53 |
-
pad_l, pad_r, roi_size = make_padding(n_frame,
|
54 |
-
data['window_size'], model.offset)
|
55 |
-
n_window = int(np.ceil(n_frame / roi_size))
|
56 |
-
|
57 |
-
X_mag_pad = np.pad(
|
58 |
-
X_mag_pre, ((0, 0), (0, 0), (pad_l, pad_r)), mode='constant')
|
59 |
-
|
60 |
-
if(list(model.state_dict().values())[0].dtype==torch.float16):is_half=True
|
61 |
-
else:is_half=False
|
62 |
-
pred = _execute(X_mag_pad, roi_size, n_window,
|
63 |
-
device, model, aggressiveness,is_half)
|
64 |
-
pred = pred[:, :, :n_frame]
|
65 |
-
|
66 |
-
if data['tta']:
|
67 |
-
pad_l += roi_size // 2
|
68 |
-
pad_r += roi_size // 2
|
69 |
-
n_window += 1
|
70 |
-
|
71 |
-
X_mag_pad = np.pad(
|
72 |
-
X_mag_pre, ((0, 0), (0, 0), (pad_l, pad_r)), mode='constant')
|
73 |
-
|
74 |
-
pred_tta = _execute(X_mag_pad, roi_size, n_window,
|
75 |
-
device, model, aggressiveness,is_half)
|
76 |
-
pred_tta = pred_tta[:, :, roi_size // 2:]
|
77 |
-
pred_tta = pred_tta[:, :, :n_frame]
|
78 |
-
|
79 |
-
return (pred + pred_tta) * 0.5 * coef, X_mag, np.exp(1.j * X_phase)
|
80 |
-
else:
|
81 |
-
return pred * coef, X_mag, np.exp(1.j * X_phase)
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
def _get_name_params(model_path , model_hash):
|
86 |
-
ModelName = model_path
|
87 |
-
if model_hash == '47939caf0cfe52a0e81442b85b971dfd':
|
88 |
-
model_params_auto=str('runtime/Lib/site-packages/uvr5_pack/lib_v5/modelparams/4band_44100.json')
|
89 |
-
param_name_auto=str('4band_44100')
|
90 |
-
if model_hash == '4e4ecb9764c50a8c414fee6e10395bbe':
|
91 |
-
model_params_auto=str('runtime/Lib/site-packages/uvr5_pack/lib_v5/modelparams/4band_v2.json')
|
92 |
-
param_name_auto=str('4band_v2')
|
93 |
-
if model_hash == 'ca106edd563e034bde0bdec4bb7a4b36':
|
94 |
-
model_params_auto=str('runtime/Lib/site-packages/uvr5_pack/lib_v5/modelparams/4band_v2.json')
|
95 |
-
param_name_auto=str('4band_v2')
|
96 |
-
if model_hash == 'e60a1e84803ce4efc0a6551206cc4b71':
|
97 |
-
model_params_auto=str('runtime/Lib/site-packages/uvr5_pack/lib_v5/modelparams/4band_44100.json')
|
98 |
-
param_name_auto=str('4band_44100')
|
99 |
-
if model_hash == 'a82f14e75892e55e994376edbf0c8435':
|
100 |
-
model_params_auto=str('runtime/Lib/site-packages/uvr5_pack/lib_v5/modelparams/4band_44100.json')
|
101 |
-
param_name_auto=str('4band_44100')
|
102 |
-
if model_hash == '6dd9eaa6f0420af9f1d403aaafa4cc06':
|
103 |
-
model_params_auto=str('runtime/Lib/site-packages/uvr5_pack/lib_v5/modelparams/4band_v2_sn.json')
|
104 |
-
param_name_auto=str('4band_v2_sn')
|
105 |
-
if model_hash == '08611fb99bd59eaa79ad27c58d137727':
|
106 |
-
model_params_auto=str('runtime/Lib/site-packages/uvr5_pack/lib_v5/modelparams/4band_v2_sn.json')
|
107 |
-
param_name_auto=str('4band_v2_sn')
|
108 |
-
if model_hash == '5c7bbca45a187e81abbbd351606164e5':
|
109 |
-
model_params_auto=str('runtime/Lib/site-packages/uvr5_pack/lib_v5/modelparams/3band_44100_msb2.json')
|
110 |
-
param_name_auto=str('3band_44100_msb2')
|
111 |
-
if model_hash == 'd6b2cb685a058a091e5e7098192d3233':
|
112 |
-
model_params_auto=str('runtime/Lib/site-packages/uvr5_pack/lib_v5/modelparams/3band_44100_msb2.json')
|
113 |
-
param_name_auto=str('3band_44100_msb2')
|
114 |
-
if model_hash == 'c1b9f38170a7c90e96f027992eb7c62b':
|
115 |
-
model_params_auto=str('runtime/Lib/site-packages/uvr5_pack/lib_v5/modelparams/4band_44100.json')
|
116 |
-
param_name_auto=str('4band_44100')
|
117 |
-
if model_hash == 'c3448ec923fa0edf3d03a19e633faa53':
|
118 |
-
model_params_auto=str('runtime/Lib/site-packages/uvr5_pack/lib_v5/modelparams/4band_44100.json')
|
119 |
-
param_name_auto=str('4band_44100')
|
120 |
-
if model_hash == '68aa2c8093d0080704b200d140f59e54':
|
121 |
-
model_params_auto=str('runtime/Lib/site-packages/uvr5_pack/lib_v5/modelparams/3band_44100.json')
|
122 |
-
param_name_auto=str('3band_44100.json')
|
123 |
-
if model_hash == 'fdc83be5b798e4bd29fe00fe6600e147':
|
124 |
-
model_params_auto=str('runtime/Lib/site-packages/uvr5_pack/lib_v5/modelparams/3band_44100_mid.json')
|
125 |
-
param_name_auto=str('3band_44100_mid.json')
|
126 |
-
if model_hash == '2ce34bc92fd57f55db16b7a4def3d745':
|
127 |
-
model_params_auto=str('runtime/Lib/site-packages/uvr5_pack/lib_v5/modelparams/3band_44100_mid.json')
|
128 |
-
param_name_auto=str('3band_44100_mid.json')
|
129 |
-
if model_hash == '52fdca89576f06cf4340b74a4730ee5f':
|
130 |
-
model_params_auto=str('runtime/Lib/site-packages/uvr5_pack/lib_v5/modelparams/4band_44100.json')
|
131 |
-
param_name_auto=str('4band_44100.json')
|
132 |
-
if model_hash == '41191165b05d38fc77f072fa9e8e8a30':
|
133 |
-
model_params_auto=str('runtime/Lib/site-packages/uvr5_pack/lib_v5/modelparams/4band_44100.json')
|
134 |
-
param_name_auto=str('4band_44100.json')
|
135 |
-
if model_hash == '89e83b511ad474592689e562d5b1f80e':
|
136 |
-
model_params_auto=str('runtime/Lib/site-packages/uvr5_pack/lib_v5/modelparams/2band_32000.json')
|
137 |
-
param_name_auto=str('2band_32000.json')
|
138 |
-
if model_hash == '0b954da81d453b716b114d6d7c95177f':
|
139 |
-
model_params_auto=str('runtime/Lib/site-packages/uvr5_pack/lib_v5/modelparams/2band_32000.json')
|
140 |
-
param_name_auto=str('2band_32000.json')
|
141 |
-
|
142 |
-
#v4 Models
|
143 |
-
if model_hash == '6a00461c51c2920fd68937d4609ed6c8':
|
144 |
-
model_params_auto=str('runtime/Lib/site-packages/uvr5_pack/lib_v5/modelparams/1band_sr16000_hl512.json')
|
145 |
-
param_name_auto=str('1band_sr16000_hl512')
|
146 |
-
if model_hash == '0ab504864d20f1bd378fe9c81ef37140':
|
147 |
-
model_params_auto=str('runtime/Lib/site-packages/uvr5_pack/lib_v5/modelparams/1band_sr32000_hl512.json')
|
148 |
-
param_name_auto=str('1band_sr32000_hl512')
|
149 |
-
if model_hash == '7dd21065bf91c10f7fccb57d7d83b07f':
|
150 |
-
model_params_auto=str('runtime/Lib/site-packages/uvr5_pack/lib_v5/modelparams/1band_sr32000_hl512.json')
|
151 |
-
param_name_auto=str('1band_sr32000_hl512')
|
152 |
-
if model_hash == '80ab74d65e515caa3622728d2de07d23':
|
153 |
-
model_params_auto=str('runtime/Lib/site-packages/uvr5_pack/lib_v5/modelparams/1band_sr32000_hl512.json')
|
154 |
-
param_name_auto=str('1band_sr32000_hl512')
|
155 |
-
if model_hash == 'edc115e7fc523245062200c00caa847f':
|
156 |
-
model_params_auto=str('runtime/Lib/site-packages/uvr5_pack/lib_v5/modelparams/1band_sr33075_hl384.json')
|
157 |
-
param_name_auto=str('1band_sr33075_hl384')
|
158 |
-
if model_hash == '28063e9f6ab5b341c5f6d3c67f2045b7':
|
159 |
-
model_params_auto=str('runtime/Lib/site-packages/uvr5_pack/lib_v5/modelparams/1band_sr33075_hl384.json')
|
160 |
-
param_name_auto=str('1band_sr33075_hl384')
|
161 |
-
if model_hash == 'b58090534c52cbc3e9b5104bad666ef2':
|
162 |
-
model_params_auto=str('runtime/Lib/site-packages/uvr5_pack/lib_v5/modelparams/1band_sr44100_hl512.json')
|
163 |
-
param_name_auto=str('1band_sr44100_hl512')
|
164 |
-
if model_hash == '0cdab9947f1b0928705f518f3c78ea8f':
|
165 |
-
model_params_auto=str('runtime/Lib/site-packages/uvr5_pack/lib_v5/modelparams/1band_sr44100_hl512.json')
|
166 |
-
param_name_auto=str('1band_sr44100_hl512')
|
167 |
-
if model_hash == 'ae702fed0238afb5346db8356fe25f13':
|
168 |
-
model_params_auto=str('runtime/Lib/site-packages/uvr5_pack/lib_v5/modelparams/1band_sr44100_hl1024.json')
|
169 |
-
param_name_auto=str('1band_sr44100_hl1024')
|
170 |
-
#User Models
|
171 |
-
|
172 |
-
#1 Band
|
173 |
-
if '1band_sr16000_hl512' in ModelName:
|
174 |
-
model_params_auto=str('runtime/Lib/site-packages/uvr5_pack/lib_v5/modelparams/1band_sr16000_hl512.json')
|
175 |
-
param_name_auto=str('1band_sr16000_hl512')
|
176 |
-
if '1band_sr32000_hl512' in ModelName:
|
177 |
-
model_params_auto=str('runtime/Lib/site-packages/uvr5_pack/lib_v5/modelparams/1band_sr32000_hl512.json')
|
178 |
-
param_name_auto=str('1band_sr32000_hl512')
|
179 |
-
if '1band_sr33075_hl384' in ModelName:
|
180 |
-
model_params_auto=str('runtime/Lib/site-packages/uvr5_pack/lib_v5/modelparams/1band_sr33075_hl384.json')
|
181 |
-
param_name_auto=str('1band_sr33075_hl384')
|
182 |
-
if '1band_sr44100_hl256' in ModelName:
|
183 |
-
model_params_auto=str('runtime/Lib/site-packages/uvr5_pack/lib_v5/modelparams/1band_sr44100_hl256.json')
|
184 |
-
param_name_auto=str('1band_sr44100_hl256')
|
185 |
-
if '1band_sr44100_hl512' in ModelName:
|
186 |
-
model_params_auto=str('runtime/Lib/site-packages/uvr5_pack/lib_v5/modelparams/1band_sr44100_hl512.json')
|
187 |
-
param_name_auto=str('1band_sr44100_hl512')
|
188 |
-
if '1band_sr44100_hl1024' in ModelName:
|
189 |
-
model_params_auto=str('runtime/Lib/site-packages/uvr5_pack/lib_v5/modelparams/1band_sr44100_hl1024.json')
|
190 |
-
param_name_auto=str('1band_sr44100_hl1024')
|
191 |
-
|
192 |
-
#2 Band
|
193 |
-
if '2band_44100_lofi' in ModelName:
|
194 |
-
model_params_auto=str('runtime/Lib/site-packages/uvr5_pack/lib_v5/modelparams/2band_44100_lofi.json')
|
195 |
-
param_name_auto=str('2band_44100_lofi')
|
196 |
-
if '2band_32000' in ModelName:
|
197 |
-
model_params_auto=str('runtime/Lib/site-packages/uvr5_pack/lib_v5/modelparams/2band_32000.json')
|
198 |
-
param_name_auto=str('2band_32000')
|
199 |
-
if '2band_48000' in ModelName:
|
200 |
-
model_params_auto=str('runtime/Lib/site-packages/uvr5_pack/lib_v5/modelparams/2band_48000.json')
|
201 |
-
param_name_auto=str('2band_48000')
|
202 |
-
|
203 |
-
#3 Band
|
204 |
-
if '3band_44100' in ModelName:
|
205 |
-
model_params_auto=str('runtime/Lib/site-packages/uvr5_pack/lib_v5/modelparams/3band_44100.json')
|
206 |
-
param_name_auto=str('3band_44100')
|
207 |
-
if '3band_44100_mid' in ModelName:
|
208 |
-
model_params_auto=str('runtime/Lib/site-packages/uvr5_pack/lib_v5/modelparams/3band_44100_mid.json')
|
209 |
-
param_name_auto=str('3band_44100_mid')
|
210 |
-
if '3band_44100_msb2' in ModelName:
|
211 |
-
model_params_auto=str('runtime/Lib/site-packages/uvr5_pack/lib_v5/modelparams/3band_44100_msb2.json')
|
212 |
-
param_name_auto=str('3band_44100_msb2')
|
213 |
-
|
214 |
-
#4 Band
|
215 |
-
if '4band_44100' in ModelName:
|
216 |
-
model_params_auto=str('runtime/Lib/site-packages/uvr5_pack/lib_v5/modelparams/4band_44100.json')
|
217 |
-
param_name_auto=str('4band_44100')
|
218 |
-
if '4band_44100_mid' in ModelName:
|
219 |
-
model_params_auto=str('runtime/Lib/site-packages/uvr5_pack/lib_v5/modelparams/4band_44100_mid.json')
|
220 |
-
param_name_auto=str('4band_44100_mid')
|
221 |
-
if '4band_44100_msb' in ModelName:
|
222 |
-
model_params_auto=str('runtime/Lib/site-packages/uvr5_pack/lib_v5/modelparams/4band_44100_msb.json')
|
223 |
-
param_name_auto=str('4band_44100_msb')
|
224 |
-
if '4band_44100_msb2' in ModelName:
|
225 |
-
model_params_auto=str('runtime/Lib/site-packages/uvr5_pack/lib_v5/modelparams/4band_44100_msb2.json')
|
226 |
-
param_name_auto=str('4band_44100_msb2')
|
227 |
-
if '4band_44100_reverse' in ModelName:
|
228 |
-
model_params_auto=str('runtime/Lib/site-packages/uvr5_pack/lib_v5/modelparams/4band_44100_reverse.json')
|
229 |
-
param_name_auto=str('4band_44100_reverse')
|
230 |
-
if '4band_44100_sw' in ModelName:
|
231 |
-
model_params_auto=str('runtime/Lib/site-packages/uvr5_pack/lib_v5/modelparams/4band_44100_sw.json')
|
232 |
-
param_name_auto=str('4band_44100_sw')
|
233 |
-
if '4band_v2' in ModelName:
|
234 |
-
model_params_auto=str('runtime/Lib/site-packages/uvr5_pack/lib_v5/modelparams/4band_v2.json')
|
235 |
-
param_name_auto=str('4band_v2')
|
236 |
-
if '4band_v2_sn' in ModelName:
|
237 |
-
model_params_auto=str('runtime/Lib/site-packages/uvr5_pack/lib_v5/modelparams/4band_v2_sn.json')
|
238 |
-
param_name_auto=str('4band_v2_sn')
|
239 |
-
if 'tmodelparam' in ModelName:
|
240 |
-
model_params_auto=str('runtime/Lib/site-packages/uvr5_pack/lib_v5/modelparams/tmodelparam.json')
|
241 |
-
param_name_auto=str('User Model Param Set')
|
242 |
-
return param_name_auto , model_params_auto
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|