Update vc_infer_pipeline.py
Browse files- vc_infer_pipeline.py +413 -181
vc_infer_pipeline.py
CHANGED
@@ -1,225 +1,457 @@
|
|
1 |
-
import
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
from time import time as ttime
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
import torch.nn.functional as F
|
4 |
-
|
5 |
-
from
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
time_step = self.window / self.sr * 1000
|
30 |
f0_min = 50
|
31 |
f0_max = 1100
|
32 |
f0_mel_min = 1127 * np.log(1 + f0_min / 700)
|
33 |
f0_mel_max = 1127 * np.log(1 + f0_max / 700)
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
40 |
f0 *= pow(2, f0_up_key / 12)
|
41 |
# with open("test.txt","w")as f:f.write("\n".join([str(i)for i in f0.tolist()]))
|
42 |
-
tf0=self.sr//self.window
|
43 |
-
if
|
44 |
-
delta_t=np.round(
|
45 |
-
|
46 |
-
|
47 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
48 |
# with open("test_opt.txt","w")as f:f.write("\n".join([str(i)for i in f0.tolist()]))
|
49 |
f0bak = f0.copy()
|
50 |
f0_mel = 1127 * np.log(1 + f0 / 700)
|
51 |
-
f0_mel[f0_mel > 0] = (f0_mel[f0_mel > 0] - f0_mel_min) * 254 / (
|
|
|
|
|
52 |
f0_mel[f0_mel <= 1] = 1
|
53 |
f0_mel[f0_mel > 255] = 255
|
54 |
-
f0_coarse = np.rint(f0_mel).astype(np.
|
55 |
-
return f0_coarse, f0bak#1-0
|
56 |
|
57 |
-
def vc(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
58 |
feats = torch.from_numpy(audio0)
|
59 |
-
if
|
60 |
-
|
|
|
|
|
61 |
if feats.dim() == 2: # double channels
|
62 |
feats = feats.mean(-1)
|
63 |
assert feats.dim() == 1, feats.dim()
|
64 |
feats = feats.view(1, -1)
|
65 |
-
padding_mask = torch.BoolTensor(feats.shape).fill_(False)
|
66 |
|
67 |
inputs = {
|
68 |
"source": feats.to(self.device),
|
69 |
-
"padding_mask": padding_mask
|
70 |
-
"output_layer": 9
|
71 |
}
|
72 |
t0 = ttime()
|
73 |
with torch.no_grad():
|
74 |
logits = model.extract_features(**inputs)
|
75 |
-
feats
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
76 |
feats = F.interpolate(feats.permute(0, 2, 1), scale_factor=2).permute(0, 2, 1)
|
|
|
|
|
|
|
|
|
77 |
t1 = ttime()
|
78 |
-
p_len = audio0.shape[0]//self.window
|
79 |
-
if
|
80 |
-
p_len=feats.shape[1]
|
81 |
-
pitch
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
kmeans = KMeans(500)
|
94 |
-
def get_cluster_result(x):
|
95 |
-
"""x: np.array [t, 256]"""
|
96 |
-
return kmeans.predict(x)
|
97 |
-
checkpoint = torch.load("lulu_contentvec_kmeans_500.pt")
|
98 |
-
kmeans.__dict__["n_features_in_"] = checkpoint["n_features_in_"]
|
99 |
-
kmeans.__dict__["_n_threads"] = checkpoint["_n_threads"]
|
100 |
-
kmeans.__dict__["cluster_centers_"] = checkpoint["cluster_centers_"]
|
101 |
-
feats = torch.from_numpy(audio0).float()
|
102 |
-
if feats.dim() == 2: # double channels
|
103 |
-
feats = feats.mean(-1)
|
104 |
-
assert feats.dim() == 1, feats.dim()
|
105 |
-
feats = feats.view(1, -1)
|
106 |
-
padding_mask = torch.BoolTensor(feats.shape).fill_(False)
|
107 |
-
inputs = {
|
108 |
-
"source": feats.half().to(self.device),
|
109 |
-
"padding_mask": padding_mask.to(self.device),
|
110 |
-
"output_layer": 9, # layer 9
|
111 |
-
}
|
112 |
-
torch.cuda.synchronize()
|
113 |
-
t0 = ttime()
|
114 |
-
with torch.no_grad():
|
115 |
-
logits = model.extract_features(**inputs)
|
116 |
-
feats = model.final_proj(logits[0])
|
117 |
-
feats = get_cluster_result(feats.cpu().numpy()[0].astype("float32"))
|
118 |
-
feats = torch.from_numpy(feats).to(self.device)
|
119 |
-
feats = F.interpolate(feats.half().unsqueeze(0).unsqueeze(0), scale_factor=2).long().squeeze(0)
|
120 |
-
t1 = ttime()
|
121 |
-
p_len = audio0.shape[0]//self.window
|
122 |
-
if(feats.shape[1]<p_len):
|
123 |
-
p_len=feats.shape[1]
|
124 |
-
pitch=pitch[:,:p_len]
|
125 |
-
pitchf=pitchf[:,:p_len]
|
126 |
-
p_len=torch.LongTensor([p_len]).to(self.device)
|
127 |
with torch.no_grad():
|
128 |
-
|
129 |
-
|
130 |
-
|
|
|
|
|
|
|
|
|
131 |
t2 = ttime()
|
132 |
-
times[0] +=
|
133 |
-
times[2] +=
|
134 |
return audio1
|
135 |
|
136 |
-
def pipeline(
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
151 |
try:
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
for line in lines:inp_f0.append([float(i)for i in line.split(",")])
|
156 |
-
inp_f0=np.array(inp_f0,dtype="float32")
|
157 |
except:
|
158 |
traceback.print_exc()
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
# pitch = pitch[:p_len]
|
165 |
-
# pitchf = pitchf[:p_len]
|
166 |
-
# else:
|
167 |
-
# pitch=resize2d(pitch,p_len,is1=True)
|
168 |
-
# pitchf=resize2d(pitchf,p_len,is1=False)
|
169 |
-
pitch = torch.LongTensor(pitch).unsqueeze(0).to(self.device)
|
170 |
-
pitchf = torch.FloatTensor(pitchf).unsqueeze(0).to(self.device)
|
171 |
-
t2=ttime()
|
172 |
-
times[1] += (t2 - t1)
|
173 |
-
for t in opt_ts:
|
174 |
-
t=t//self.window*self.window
|
175 |
-
audio_opt.append(self.vc(model,net_g,dv,audio_pad[s:t+self.t_pad2+self.window],pitch[:,s//self.window:(t+self.t_pad2)//self.window],pitchf[:,s//self.window:(t+self.t_pad2)//self.window],times)[self.t_pad_tgt:-self.t_pad_tgt])
|
176 |
-
s = t
|
177 |
-
audio_opt.append(self.vc(model,net_g,dv,audio_pad[t:],pitch[:,t//self.window:]if t is not None else pitch,pitchf[:,t//self.window:]if t is not None else pitchf,times)[self.t_pad_tgt:-self.t_pad_tgt])
|
178 |
-
audio_opt=np.concatenate(audio_opt)
|
179 |
-
del pitch,pitchf
|
180 |
-
return audio_opt
|
181 |
-
def pipeline_km(self,model,net_g,dv,audio,times,f0_up_key,f0_file=None):
|
182 |
-
audio_pad = np.pad(audio, (self.window // 2, self.window // 2), mode='reflect')
|
183 |
opt_ts = []
|
184 |
-
if
|
185 |
audio_sum = np.zeros_like(audio)
|
186 |
-
for i in range(self.window):
|
187 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
188 |
s = 0
|
189 |
-
audio_opt=[]
|
190 |
-
t=None
|
191 |
-
t1=ttime()
|
192 |
-
audio_pad = np.pad(audio, (self.t_pad, self.t_pad), mode=
|
193 |
-
p_len=audio_pad.shape[0]//self.window
|
194 |
-
inp_f0=None
|
195 |
-
if
|
196 |
try:
|
197 |
-
with open(f0_file.name,"r")as f:
|
198 |
-
lines=f.read().strip("\n").split("\n")
|
199 |
-
inp_f0=[]
|
200 |
-
for line in lines:
|
201 |
-
|
|
|
202 |
except:
|
203 |
traceback.print_exc()
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
-
|
210 |
-
|
211 |
-
|
212 |
-
|
213 |
-
|
214 |
-
|
215 |
-
|
216 |
-
|
217 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
218 |
for t in opt_ts:
|
219 |
-
t=t//self.window*self.window
|
220 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
221 |
s = t
|
222 |
-
|
223 |
-
|
224 |
-
|
225 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import sys
|
3 |
+
import traceback
|
4 |
+
import logging
|
5 |
+
|
6 |
+
logger = logging.getLogger(__name__)
|
7 |
+
|
8 |
+
from functools import lru_cache
|
9 |
from time import time as ttime
|
10 |
+
|
11 |
+
import faiss
|
12 |
+
import librosa
|
13 |
+
import numpy as np
|
14 |
+
import parselmouth
|
15 |
+
import pyworld
|
16 |
+
import torch
|
17 |
import torch.nn.functional as F
|
18 |
+
import torchcrepe
|
19 |
+
from scipy import signal
|
20 |
+
|
21 |
+
now_dir = os.getcwd()
|
22 |
+
sys.path.append(now_dir)
|
23 |
+
|
24 |
+
bh, ah = signal.butter(N=5, Wn=48, btype="high", fs=16000)
|
25 |
+
|
26 |
+
input_audio_path2wav = {}
|
27 |
+
|
28 |
+
|
29 |
+
@lru_cache
|
30 |
+
def cache_harvest_f0(input_audio_path, fs, f0max, f0min, frame_period):
|
31 |
+
audio = input_audio_path2wav[input_audio_path]
|
32 |
+
f0, t = pyworld.harvest(
|
33 |
+
audio,
|
34 |
+
fs=fs,
|
35 |
+
f0_ceil=f0max,
|
36 |
+
f0_floor=f0min,
|
37 |
+
frame_period=frame_period,
|
38 |
+
)
|
39 |
+
f0 = pyworld.stonemask(audio, f0, t, fs)
|
40 |
+
return f0
|
41 |
+
|
42 |
+
|
43 |
+
def change_rms(data1, sr1, data2, sr2, rate): # 1是输入音频,2是输出音频,rate是2的占比
|
44 |
+
# print(data1.max(),data2.max())
|
45 |
+
rms1 = librosa.feature.rms(
|
46 |
+
y=data1, frame_length=sr1 // 2 * 2, hop_length=sr1 // 2
|
47 |
+
) # 每半秒一个点
|
48 |
+
rms2 = librosa.feature.rms(y=data2, frame_length=sr2 // 2 * 2, hop_length=sr2 // 2)
|
49 |
+
rms1 = torch.from_numpy(rms1)
|
50 |
+
rms1 = F.interpolate(
|
51 |
+
rms1.unsqueeze(0), size=data2.shape[0], mode="linear"
|
52 |
+
).squeeze()
|
53 |
+
rms2 = torch.from_numpy(rms2)
|
54 |
+
rms2 = F.interpolate(
|
55 |
+
rms2.unsqueeze(0), size=data2.shape[0], mode="linear"
|
56 |
+
).squeeze()
|
57 |
+
rms2 = torch.max(rms2, torch.zeros_like(rms2) + 1e-6)
|
58 |
+
data2 *= (
|
59 |
+
torch.pow(rms1, torch.tensor(1 - rate))
|
60 |
+
* torch.pow(rms2, torch.tensor(rate - 1))
|
61 |
+
).numpy()
|
62 |
+
return data2
|
63 |
+
|
64 |
+
|
65 |
+
class Pipeline(object):
|
66 |
+
def __init__(self, tgt_sr, config):
|
67 |
+
self.x_pad, self.x_query, self.x_center, self.x_max, self.is_half = (
|
68 |
+
config.x_pad,
|
69 |
+
config.x_query,
|
70 |
+
config.x_center,
|
71 |
+
config.x_max,
|
72 |
+
config.is_half,
|
73 |
+
)
|
74 |
+
self.sr = 16000 # hubert输入采样率
|
75 |
+
self.window = 160 # 每帧点数
|
76 |
+
self.t_pad = self.sr * self.x_pad # 每条前后pad时间
|
77 |
+
self.t_pad_tgt = tgt_sr * self.x_pad
|
78 |
+
self.t_pad2 = self.t_pad * 2
|
79 |
+
self.t_query = self.sr * self.x_query # 查询切点前后查询时间
|
80 |
+
self.t_center = self.sr * self.x_center # 查询切点位置
|
81 |
+
self.t_max = self.sr * self.x_max # 免查询时长阈值
|
82 |
+
self.device = config.device
|
83 |
+
|
84 |
+
def get_f0(
|
85 |
+
self,
|
86 |
+
input_audio_path,
|
87 |
+
x,
|
88 |
+
p_len,
|
89 |
+
f0_up_key,
|
90 |
+
f0_method,
|
91 |
+
filter_radius,
|
92 |
+
inp_f0=None,
|
93 |
+
):
|
94 |
+
global input_audio_path2wav
|
95 |
time_step = self.window / self.sr * 1000
|
96 |
f0_min = 50
|
97 |
f0_max = 1100
|
98 |
f0_mel_min = 1127 * np.log(1 + f0_min / 700)
|
99 |
f0_mel_max = 1127 * np.log(1 + f0_max / 700)
|
100 |
+
if f0_method == "pm":
|
101 |
+
f0 = (
|
102 |
+
parselmouth.Sound(x, self.sr)
|
103 |
+
.to_pitch_ac(
|
104 |
+
time_step=time_step / 1000,
|
105 |
+
voicing_threshold=0.6,
|
106 |
+
pitch_floor=f0_min,
|
107 |
+
pitch_ceiling=f0_max,
|
108 |
+
)
|
109 |
+
.selected_array["frequency"]
|
110 |
+
)
|
111 |
+
pad_size = (p_len - len(f0) + 1) // 2
|
112 |
+
if pad_size > 0 or p_len - len(f0) - pad_size > 0:
|
113 |
+
f0 = np.pad(
|
114 |
+
f0, [[pad_size, p_len - len(f0) - pad_size]], mode="constant"
|
115 |
+
)
|
116 |
+
elif f0_method == "harvest":
|
117 |
+
input_audio_path2wav[input_audio_path] = x.astype(np.double)
|
118 |
+
f0 = cache_harvest_f0(input_audio_path, self.sr, f0_max, f0_min, 10)
|
119 |
+
if filter_radius > 2:
|
120 |
+
f0 = signal.medfilt(f0, 3)
|
121 |
+
elif f0_method == "crepe":
|
122 |
+
model = "full"
|
123 |
+
# Pick a batch size that doesn't cause memory errors on your gpu
|
124 |
+
batch_size = 512
|
125 |
+
# Compute pitch using first gpu
|
126 |
+
audio = torch.tensor(np.copy(x))[None].float()
|
127 |
+
f0, pd = torchcrepe.predict(
|
128 |
+
audio,
|
129 |
+
self.sr,
|
130 |
+
self.window,
|
131 |
+
f0_min,
|
132 |
+
f0_max,
|
133 |
+
model,
|
134 |
+
batch_size=batch_size,
|
135 |
+
device=self.device,
|
136 |
+
return_periodicity=True,
|
137 |
+
)
|
138 |
+
pd = torchcrepe.filter.median(pd, 3)
|
139 |
+
f0 = torchcrepe.filter.mean(f0, 3)
|
140 |
+
f0[pd < 0.1] = 0
|
141 |
+
f0 = f0[0].cpu().numpy()
|
142 |
+
elif f0_method == "rmvpe":
|
143 |
+
if not hasattr(self, "model_rmvpe"):
|
144 |
+
from infer.lib.rmvpe import RMVPE
|
145 |
+
|
146 |
+
logger.info(
|
147 |
+
"Loading rmvpe model,%s" % "%s/rmvpe.pt" % os.environ["rmvpe_root"]
|
148 |
+
)
|
149 |
+
self.model_rmvpe = RMVPE(
|
150 |
+
"%s/rmvpe.pt" % os.environ["rmvpe_root"],
|
151 |
+
is_half=self.is_half,
|
152 |
+
device=self.device,
|
153 |
+
)
|
154 |
+
f0 = self.model_rmvpe.infer_from_audio(x, thred=0.03)
|
155 |
+
|
156 |
+
if "privateuseone" in str(self.device): # clean ortruntime memory
|
157 |
+
del self.model_rmvpe.model
|
158 |
+
del self.model_rmvpe
|
159 |
+
logger.info("Cleaning ortruntime memory")
|
160 |
+
|
161 |
f0 *= pow(2, f0_up_key / 12)
|
162 |
# with open("test.txt","w")as f:f.write("\n".join([str(i)for i in f0.tolist()]))
|
163 |
+
tf0 = self.sr // self.window # 每秒f0点数
|
164 |
+
if inp_f0 is not None:
|
165 |
+
delta_t = np.round(
|
166 |
+
(inp_f0[:, 0].max() - inp_f0[:, 0].min()) * tf0 + 1
|
167 |
+
).astype("int16")
|
168 |
+
replace_f0 = np.interp(
|
169 |
+
list(range(delta_t)), inp_f0[:, 0] * 100, inp_f0[:, 1]
|
170 |
+
)
|
171 |
+
shape = f0[self.x_pad * tf0 : self.x_pad * tf0 + len(replace_f0)].shape[0]
|
172 |
+
f0[self.x_pad * tf0 : self.x_pad * tf0 + len(replace_f0)] = replace_f0[
|
173 |
+
:shape
|
174 |
+
]
|
175 |
# with open("test_opt.txt","w")as f:f.write("\n".join([str(i)for i in f0.tolist()]))
|
176 |
f0bak = f0.copy()
|
177 |
f0_mel = 1127 * np.log(1 + f0 / 700)
|
178 |
+
f0_mel[f0_mel > 0] = (f0_mel[f0_mel > 0] - f0_mel_min) * 254 / (
|
179 |
+
f0_mel_max - f0_mel_min
|
180 |
+
) + 1
|
181 |
f0_mel[f0_mel <= 1] = 1
|
182 |
f0_mel[f0_mel > 255] = 255
|
183 |
+
f0_coarse = np.rint(f0_mel).astype(np.int32)
|
184 |
+
return f0_coarse, f0bak # 1-0
|
185 |
|
186 |
+
def vc(
|
187 |
+
self,
|
188 |
+
model,
|
189 |
+
net_g,
|
190 |
+
sid,
|
191 |
+
audio0,
|
192 |
+
pitch,
|
193 |
+
pitchf,
|
194 |
+
times,
|
195 |
+
index,
|
196 |
+
big_npy,
|
197 |
+
index_rate,
|
198 |
+
version,
|
199 |
+
protect,
|
200 |
+
): # ,file_index,file_big_npy
|
201 |
feats = torch.from_numpy(audio0)
|
202 |
+
if self.is_half:
|
203 |
+
feats = feats.half()
|
204 |
+
else:
|
205 |
+
feats = feats.float()
|
206 |
if feats.dim() == 2: # double channels
|
207 |
feats = feats.mean(-1)
|
208 |
assert feats.dim() == 1, feats.dim()
|
209 |
feats = feats.view(1, -1)
|
210 |
+
padding_mask = torch.BoolTensor(feats.shape).to(self.device).fill_(False)
|
211 |
|
212 |
inputs = {
|
213 |
"source": feats.to(self.device),
|
214 |
+
"padding_mask": padding_mask,
|
215 |
+
"output_layer": 9 if version == "v1" else 12,
|
216 |
}
|
217 |
t0 = ttime()
|
218 |
with torch.no_grad():
|
219 |
logits = model.extract_features(**inputs)
|
220 |
+
feats = model.final_proj(logits[0]) if version == "v1" else logits[0]
|
221 |
+
if protect < 0.5 and pitch is not None and pitchf is not None:
|
222 |
+
feats0 = feats.clone()
|
223 |
+
if (
|
224 |
+
not isinstance(index, type(None))
|
225 |
+
and not isinstance(big_npy, type(None))
|
226 |
+
and index_rate != 0
|
227 |
+
):
|
228 |
+
npy = feats[0].cpu().numpy()
|
229 |
+
if self.is_half:
|
230 |
+
npy = npy.astype("float32")
|
231 |
+
|
232 |
+
# _, I = index.search(npy, 1)
|
233 |
+
# npy = big_npy[I.squeeze()]
|
234 |
+
|
235 |
+
score, ix = index.search(npy, k=8)
|
236 |
+
weight = np.square(1 / score)
|
237 |
+
weight /= weight.sum(axis=1, keepdims=True)
|
238 |
+
npy = np.sum(big_npy[ix] * np.expand_dims(weight, axis=2), axis=1)
|
239 |
+
|
240 |
+
if self.is_half:
|
241 |
+
npy = npy.astype("float16")
|
242 |
+
feats = (
|
243 |
+
torch.from_numpy(npy).unsqueeze(0).to(self.device) * index_rate
|
244 |
+
+ (1 - index_rate) * feats
|
245 |
+
)
|
246 |
+
|
247 |
feats = F.interpolate(feats.permute(0, 2, 1), scale_factor=2).permute(0, 2, 1)
|
248 |
+
if protect < 0.5 and pitch is not None and pitchf is not None:
|
249 |
+
feats0 = F.interpolate(feats0.permute(0, 2, 1), scale_factor=2).permute(
|
250 |
+
0, 2, 1
|
251 |
+
)
|
252 |
t1 = ttime()
|
253 |
+
p_len = audio0.shape[0] // self.window
|
254 |
+
if feats.shape[1] < p_len:
|
255 |
+
p_len = feats.shape[1]
|
256 |
+
if pitch is not None and pitchf is not None:
|
257 |
+
pitch = pitch[:, :p_len]
|
258 |
+
pitchf = pitchf[:, :p_len]
|
259 |
+
|
260 |
+
if protect < 0.5 and pitch is not None and pitchf is not None:
|
261 |
+
pitchff = pitchf.clone()
|
262 |
+
pitchff[pitchf > 0] = 1
|
263 |
+
pitchff[pitchf < 1] = protect
|
264 |
+
pitchff = pitchff.unsqueeze(-1)
|
265 |
+
feats = feats * pitchff + feats0 * (1 - pitchff)
|
266 |
+
feats = feats.to(feats0.dtype)
|
267 |
+
p_len = torch.tensor([p_len], device=self.device).long()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
268 |
with torch.no_grad():
|
269 |
+
hasp = pitch is not None and pitchf is not None
|
270 |
+
arg = (feats, p_len, pitch, pitchf, sid) if hasp else (feats, p_len, sid)
|
271 |
+
audio1 = (net_g.infer(*arg)[0][0, 0]).data.cpu().float().numpy()
|
272 |
+
del hasp, arg
|
273 |
+
del feats, p_len, padding_mask
|
274 |
+
if torch.cuda.is_available():
|
275 |
+
torch.cuda.empty_cache()
|
276 |
t2 = ttime()
|
277 |
+
times[0] += t1 - t0
|
278 |
+
times[2] += t2 - t1
|
279 |
return audio1
|
280 |
|
281 |
+
def pipeline(
|
282 |
+
self,
|
283 |
+
model,
|
284 |
+
net_g,
|
285 |
+
sid,
|
286 |
+
audio,
|
287 |
+
input_audio_path,
|
288 |
+
times,
|
289 |
+
f0_up_key,
|
290 |
+
f0_method,
|
291 |
+
file_index,
|
292 |
+
index_rate,
|
293 |
+
if_f0,
|
294 |
+
filter_radius,
|
295 |
+
tgt_sr,
|
296 |
+
resample_sr,
|
297 |
+
rms_mix_rate,
|
298 |
+
version,
|
299 |
+
protect,
|
300 |
+
f0_file=None,
|
301 |
+
):
|
302 |
+
if (
|
303 |
+
file_index != ""
|
304 |
+
# and file_big_npy != ""
|
305 |
+
# and os.path.exists(file_big_npy) == True
|
306 |
+
and os.path.exists(file_index)
|
307 |
+
and index_rate != 0
|
308 |
+
):
|
309 |
try:
|
310 |
+
index = faiss.read_index(file_index)
|
311 |
+
# big_npy = np.load(file_big_npy)
|
312 |
+
big_npy = index.reconstruct_n(0, index.ntotal)
|
|
|
|
|
313 |
except:
|
314 |
traceback.print_exc()
|
315 |
+
index = big_npy = None
|
316 |
+
else:
|
317 |
+
index = big_npy = None
|
318 |
+
audio = signal.filtfilt(bh, ah, audio)
|
319 |
+
audio_pad = np.pad(audio, (self.window // 2, self.window // 2), mode="reflect")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
320 |
opt_ts = []
|
321 |
+
if audio_pad.shape[0] > self.t_max:
|
322 |
audio_sum = np.zeros_like(audio)
|
323 |
+
for i in range(self.window):
|
324 |
+
audio_sum += np.abs(audio_pad[i : i - self.window])
|
325 |
+
for t in range(self.t_center, audio.shape[0], self.t_center):
|
326 |
+
opt_ts.append(
|
327 |
+
t
|
328 |
+
- self.t_query
|
329 |
+
+ np.where(
|
330 |
+
audio_sum[t - self.t_query : t + self.t_query]
|
331 |
+
== audio_sum[t - self.t_query : t + self.t_query].min()
|
332 |
+
)[0][0]
|
333 |
+
)
|
334 |
s = 0
|
335 |
+
audio_opt = []
|
336 |
+
t = None
|
337 |
+
t1 = ttime()
|
338 |
+
audio_pad = np.pad(audio, (self.t_pad, self.t_pad), mode="reflect")
|
339 |
+
p_len = audio_pad.shape[0] // self.window
|
340 |
+
inp_f0 = None
|
341 |
+
if hasattr(f0_file, "name"):
|
342 |
try:
|
343 |
+
with open(f0_file.name, "r") as f:
|
344 |
+
lines = f.read().strip("\n").split("\n")
|
345 |
+
inp_f0 = []
|
346 |
+
for line in lines:
|
347 |
+
inp_f0.append([float(i) for i in line.split(",")])
|
348 |
+
inp_f0 = np.array(inp_f0, dtype="float32")
|
349 |
except:
|
350 |
traceback.print_exc()
|
351 |
+
sid = torch.tensor(sid, device=self.device).unsqueeze(0).long()
|
352 |
+
pitch, pitchf = None, None
|
353 |
+
if if_f0 == 1:
|
354 |
+
pitch, pitchf = self.get_f0(
|
355 |
+
input_audio_path,
|
356 |
+
audio_pad,
|
357 |
+
p_len,
|
358 |
+
f0_up_key,
|
359 |
+
f0_method,
|
360 |
+
filter_radius,
|
361 |
+
inp_f0,
|
362 |
+
)
|
363 |
+
pitch = pitch[:p_len]
|
364 |
+
pitchf = pitchf[:p_len]
|
365 |
+
if "mps" not in str(self.device) or "xpu" not in str(self.device):
|
366 |
+
pitchf = pitchf.astype(np.float32)
|
367 |
+
pitch = torch.tensor(pitch, device=self.device).unsqueeze(0).long()
|
368 |
+
pitchf = torch.tensor(pitchf, device=self.device).unsqueeze(0).float()
|
369 |
+
t2 = ttime()
|
370 |
+
times[1] += t2 - t1
|
371 |
for t in opt_ts:
|
372 |
+
t = t // self.window * self.window
|
373 |
+
if if_f0 == 1:
|
374 |
+
audio_opt.append(
|
375 |
+
self.vc(
|
376 |
+
model,
|
377 |
+
net_g,
|
378 |
+
sid,
|
379 |
+
audio_pad[s : t + self.t_pad2 + self.window],
|
380 |
+
pitch[:, s // self.window : (t + self.t_pad2) // self.window],
|
381 |
+
pitchf[:, s // self.window : (t + self.t_pad2) // self.window],
|
382 |
+
times,
|
383 |
+
index,
|
384 |
+
big_npy,
|
385 |
+
index_rate,
|
386 |
+
version,
|
387 |
+
protect,
|
388 |
+
)[self.t_pad_tgt : -self.t_pad_tgt]
|
389 |
+
)
|
390 |
+
else:
|
391 |
+
audio_opt.append(
|
392 |
+
self.vc(
|
393 |
+
model,
|
394 |
+
net_g,
|
395 |
+
sid,
|
396 |
+
audio_pad[s : t + self.t_pad2 + self.window],
|
397 |
+
None,
|
398 |
+
None,
|
399 |
+
times,
|
400 |
+
index,
|
401 |
+
big_npy,
|
402 |
+
index_rate,
|
403 |
+
version,
|
404 |
+
protect,
|
405 |
+
)[self.t_pad_tgt : -self.t_pad_tgt]
|
406 |
+
)
|
407 |
s = t
|
408 |
+
if if_f0 == 1:
|
409 |
+
audio_opt.append(
|
410 |
+
self.vc(
|
411 |
+
model,
|
412 |
+
net_g,
|
413 |
+
sid,
|
414 |
+
audio_pad[t:],
|
415 |
+
pitch[:, t // self.window :] if t is not None else pitch,
|
416 |
+
pitchf[:, t // self.window :] if t is not None else pitchf,
|
417 |
+
times,
|
418 |
+
index,
|
419 |
+
big_npy,
|
420 |
+
index_rate,
|
421 |
+
version,
|
422 |
+
protect,
|
423 |
+
)[self.t_pad_tgt : -self.t_pad_tgt]
|
424 |
+
)
|
425 |
+
else:
|
426 |
+
audio_opt.append(
|
427 |
+
self.vc(
|
428 |
+
model,
|
429 |
+
net_g,
|
430 |
+
sid,
|
431 |
+
audio_pad[t:],
|
432 |
+
None,
|
433 |
+
None,
|
434 |
+
times,
|
435 |
+
index,
|
436 |
+
big_npy,
|
437 |
+
index_rate,
|
438 |
+
version,
|
439 |
+
protect,
|
440 |
+
)[self.t_pad_tgt : -self.t_pad_tgt]
|
441 |
+
)
|
442 |
+
audio_opt = np.concatenate(audio_opt)
|
443 |
+
if rms_mix_rate != 1:
|
444 |
+
audio_opt = change_rms(audio, 16000, audio_opt, tgt_sr, rms_mix_rate)
|
445 |
+
if tgt_sr != resample_sr >= 16000:
|
446 |
+
audio_opt = librosa.resample(
|
447 |
+
audio_opt, orig_sr=tgt_sr, target_sr=resample_sr
|
448 |
+
)
|
449 |
+
audio_max = np.abs(audio_opt).max() / 0.99
|
450 |
+
max_int16 = 32768
|
451 |
+
if audio_max > 1:
|
452 |
+
max_int16 /= audio_max
|
453 |
+
audio_opt = (audio_opt * max_int16).astype(np.int16)
|
454 |
+
del pitch, pitchf, sid
|
455 |
+
if torch.cuda.is_available():
|
456 |
+
torch.cuda.empty_cache()
|
457 |
+
return audio_opt
|