mrdbourke's picture
End of training
7b2460b verified
metadata
library_name: transformers
license: apache-2.0
base_model: PekingU/rtdetr_v2_r50vd
tags:
  - generated_from_trainer
model-index:
  - name: learn_hf-rt-detrv2-finetuned-on-trashify-dataset-video
    results: []

learn_hf-rt-detrv2-finetuned-on-trashify-dataset-video

This model is a fine-tuned version of PekingU/rtdetr_v2_r50vd on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 10.1612
  • Map: 0.4478
  • Map 50: 0.5864
  • Map 75: 0.5096
  • Map Small: 0.0
  • Map Medium: 0.2891
  • Map Large: 0.4581
  • Mar 1: 0.5121
  • Mar 10: 0.7092
  • Mar 100: 0.7613
  • Mar Small: 0.0
  • Mar Medium: 0.5975
  • Mar Large: 0.7815
  • Map Bin: 0.746
  • Mar Bin: 0.9187
  • Map Hand: 0.5961
  • Mar Hand: 0.8136
  • Map Not Bin: 0.0561
  • Mar Not Bin: 0.5727
  • Map Not Hand: 0.0185
  • Mar Not Hand: 0.6333
  • Map Not Trash: 0.2151
  • Mar Not Trash: 0.6222
  • Map Trash: 0.6585
  • Mar Trash: 0.8397
  • Map Trash Arm: 0.8444
  • Mar Trash Arm: 0.9286

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.05
  • num_epochs: 10
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Map Map 50 Map 75 Map Small Map Medium Map Large Mar 1 Mar 10 Mar 100 Mar Small Mar Medium Mar Large Map Bin Mar Bin Map Hand Mar Hand Map Not Bin Mar Not Bin Map Not Hand Mar Not Hand Map Not Trash Mar Not Trash Map Trash Mar Trash Map Trash Arm Mar Trash Arm
90.2652 1.0 50 22.7169 0.2343 0.342 0.2447 0.0 0.0133 0.2432 0.3225 0.502 0.5748 0.0 0.0977 0.628 0.5467 0.8326 0.4655 0.65 0.007 0.45 -1.0 -1.0 0.0117 0.3264 0.3706 0.623 0.0044 0.5667
26.5507 2.0 100 13.5049 0.4103 0.5773 0.4496 0.02 0.1152 0.4293 0.4729 0.6547 0.7171 0.1 0.3898 0.7515 0.6658 0.8965 0.5505 0.7667 0.008 0.5071 -1.0 -1.0 0.1584 0.5111 0.6138 0.7876 0.4657 0.8333
19.0339 3.0 150 11.7506 0.4485 0.6168 0.528 0.0714 0.2235 0.4651 0.5086 0.7004 0.7429 0.25 0.5403 0.7789 0.6937 0.8894 0.596 0.7931 0.0112 0.55 -1.0 -1.0 0.1558 0.5931 0.6348 0.7982 0.5993 0.8333
16.4727 4.0 200 11.0906 0.5126 0.6896 0.5739 0.0 0.2155 0.5353 0.5473 0.7081 0.7555 0.0 0.4216 0.798 0.7116 0.8851 0.6232 0.7922 0.0478 0.55 -1.0 -1.0 0.2404 0.5819 0.6315 0.7903 0.8211 0.9333
15.0827 5.0 250 10.7144 0.4955 0.6776 0.5712 0.125 0.225 0.518 0.5428 0.695 0.7541 0.25 0.4699 0.7957 0.7618 0.9113 0.5424 0.7735 0.0344 0.5357 -1.0 -1.0 0.248 0.5986 0.6267 0.8053 0.7599 0.9
13.9634 6.0 300 10.6771 0.5377 0.7197 0.5907 0.2 0.3086 0.567 0.571 0.737 0.7894 0.2 0.5352 0.8348 0.7489 0.9121 0.5976 0.7951 0.1615 0.7214 -1.0 -1.0 0.2387 0.6 0.6643 0.808 0.8148 0.9
13.0714 7.0 350 10.4076 0.5525 0.7296 0.6065 0.2 0.1863 0.5876 0.5696 0.7384 0.781 0.2 0.3295 0.8492 0.7707 0.9078 0.629 0.8127 0.1764 0.5929 -1.0 -1.0 0.2363 0.5889 0.657 0.8168 0.8456 0.9667
12.405 8.0 400 10.2652 0.5346 0.7063 0.6085 0.3 0.2124 0.5697 0.55 0.7165 0.7691 0.3 0.3716 0.8306 0.7666 0.9028 0.5832 0.8118 0.1874 0.5786 -1.0 -1.0 0.2255 0.6153 0.644 0.8062 0.8007 0.9
11.7512 9.0 450 10.0407 0.5506 0.7358 0.6293 0.3 0.2311 0.5877 0.5614 0.7456 0.7755 0.3 0.4398 0.8337 0.7602 0.9142 0.6356 0.8029 0.2287 0.5857 -1.0 -1.0 0.2414 0.6306 0.6674 0.8195 0.7705 0.9
11.3543 10.0 500 10.0798 0.5401 0.7284 0.6267 0.3 0.2092 0.5756 0.5473 0.7485 0.7801 0.3 0.3767 0.8405 0.7629 0.905 0.6323 0.8059 0.2095 0.5857 -1.0 -1.0 0.2192 0.6278 0.6597 0.823 0.7569 0.9333

Framework versions

  • Transformers 4.53.1
  • Pytorch 2.6.0+cu124
  • Datasets 4.0.0
  • Tokenizers 0.21.2